程莹, 臧纪, 宋骏杰, 等.基于臭氧微纳米气泡的 O₃-H₂O₂ 体系降解有机污染物的效能与影响因素 [J].环境工程技术学报, 2022, 12(4): 1317-1323. CHENG Y,ZANG J,SONG J J,et al.Degradation efficiency and influencing factors of organic contaminants in O₃-H₂O₂ system based on ozone micro-nanobubbles[J].Journal of Environmental Engineering Technology, 2022, 12(4): 1317-1323.

基于臭氧微纳米气泡的 O₃-H₂O₂ 体系降解 有机污染物的效能与影响因素

程莹1,2, 臧纪1,2, 宋骏杰1,2, 李伟平1,2*, 刘桂建2,3

1.安徽国祯环境修复股份有限公司
 2.合肥市土壤及地下水修复工程技术研究中心
 3.中国科学技术大学地球和空间科学学院

摘要 针对传统臭氧氧化技术传质效率低和易产生消毒副产物的问题,采用臭氧微纳米气泡联合 H₂O₂ 氧化体系提高传质效 率,增加氧化能力及减少消毒副产物的产生。通过试验模拟研究了臭氧速率、H₂O₂ 浓度、地下水常见地球化学参数对 2-氯酚降 解效果的影响,并研究了 O₃-H₂O₂ 体系对典型环境污染物的降解效果。结果表明:臭氧速率在 40 mg/min 时,臭氧利用率最高; H₂O₂ 浓度为 0.5 mmol/L、pH 为 9 时,O₃-H₂O₂ 体系对 2-氯酚的降解效果最佳; Cl⁻、CO₃²/HCO₃、天然有机质的存在对 O₃-H₂O₂ 体系均具有抑制作用;O₃-H₂O₂ 体系对抗生素类、氯酚类、氯代烃、含硝基类有机物 4 类典型的环境污染物都具有较好的 降解效果。

关键词 臭氧; 过氧化氢; 微纳米气泡; 高级氧化; 溴酸盐 中图分类号: X523 文章编号: 1674-991X(2022)04-1317-07 doi: 10.12153/j.issn.1674-991X.20220194

Degradation efficiency and influencing factors of organic contaminants in O₃-H₂O₂ system based on ozone micro-nanobubbles

CHENG Ying^{1,2}, ZANG Ji^{1,2}, SONG Junjie^{1,2}, LI Weiping^{1,2*}, LIU Guijian^{2,3}

1. Anhui Guozhen Environmental Restoration Co., Ltd.

2. Hefei Engineering Research Center for Soil and Groundwater Remediation

3. School of Earth and Space Sciences, University of Science and Technology of China

Abstract Aiming at solving the problem of low mass transfer efficiency and easy generation of disinfection byproducts of traditional ozonation technology, ozone micro-nanobubbles combined with H_2O_2 oxidation system was adopted to improve mass transfer efficiency and oxidation capacity and reduce the production of disinfection byproducts. The effects of ozone flow rate, H_2O_2 concentration, and common groundwater geochemical parameters on the degradation of 2-chlorophenol were investigated, and the application of the O_3 - H_2O_2 system to typical environmental pollutants was studied. The experimental results showed that the ozone utilization rate was the highest when the ozone rate was 40 mg/min; O_3 - H_2O_2 system had the best degradation efficiency on 2-chlorophenol when H_2O_2 concentration was 0.5 mmol/L and pH=9; the existence of Cl⁻, CO₃²⁻/HCO₃⁻ and natural organic matter inhibited O_3 - H_2O_2 system; O_3 - H_2O_2 system had good degradation effects on four typical environmental pollutants including antibiotics, chlorophenols, chlorinated hydrocarbons, and nitro-containing organic compounds. **Key words** ozone; hydrogen peroxide; micro-nanobubbles; advanced oxidation; bromate

氯酚化合物 (CPC) 是重要的化工原料,并广泛 应用于农业、造纸厂、木材防腐和制药工程。水环 境中的氯酚化合物主要是由工业废水和生活污水排 放导致。由于氯酚化合物具有高毒性、持久性和致 突变性并可通过食物链富集等特点被列为优先污染 物^[1]。特别是 2-氯酚(2-CP)作为最具代表性的氯酚

收稿日期:2022-03-04

基金项目:安徽省科技重大专项(202003a06020024);合肥市关键共性技术研发项目(2021GJ063)

作者简介:程莹(1994—),女,工程师,硕士,主要研究方向为土壤和地下水污染治理与修复,1637478911@qq.com

^{*}责任作者:李伟平(1988—),男,助理研究员,博士,主要研究方向为土壤及地下水高级氧化、土壤重金属治理修复,liweiping@mail.ustc.edu.cn

化合物之一,因其苯基结构和氯的存在而具有高稳 定性和致癌性,已被中国和美国列为优先污染 物^[2]。臭氧氧化技术因其较高的氧化能力,在水处理 领域得到广泛应用^[3-5]。但在传统的臭氧曝气方式 下,运行成本高、传质效率低、对污染物无选择性, 而且在氧化过程中会生成毒性更强的中间产物和消 毒副产物。臭氧微纳米气泡具有停留时间长、传质 效率高等优点,并且在氧化过程中会生成反应活性 更高、氧化能力更强的羟基自由基,提高臭氧对难降 解有机物的氧化降解效果^[6-9]。夏志然等^[10]的研究 表明,微纳米气泡技术能够较大程度提高臭氧在水 体中的传质速率以及浓度峰值,并且有效延长臭氧 在水体内的存在时间。Kerfoot^[11]曾将臭氧微纳米气 泡应用于氯代烃类污染场地的原位修复,修复效果 显著。

高级氧化技术旨在通过促进羟基自由基的产 生,进一步氧化有机污染物,近年来利用 O₃-H₂O₂ 联 用的高级氧化技术降解有机污染物成为新的研究热 点^[12-16]。孟宁等^[17] 利用 O₃-H₂O₂ 联用高级氧化技术 处理油田采油废水,结果表明 O₃-H₂O₂ 联用工艺处 理效果显著优于臭氧单独氧化工艺。Liang 等^[18] 采 用 O₃-H₂O₂ 体系修复甲基叔二丁醚污染场地,发现 O₃-H₂O₂ 体系相比单独臭氧体系,氧化效果更彻底, 反应速率更快。值得注意的是,在含溴的地下水环 境中,相比于单独的臭氧体系,O₃-H₂O₂ 体系中产生 的溴酸盐生成量明显降低^[19]。

为解决传统臭氧氧化技术传质效率低和易产生 消毒副产物的问题,笔者采用臭氧微纳米气泡及基 于臭氧微纳米气泡的 O₃-H₂O₂体系(设备)对水环境 中的 2-氯酚进行降解,并探究了臭氧速率、H₂O₂浓 度、pH、地下水中常见阴离子、天然有机质等环境因 素对其降解特性的影响,以及不同 H₂O₂浓度对消毒 副产物(溴酸根)生成量的影响。此外,还研究了 O₃-H₂O₂体系对抗生素类、氯酚类、氯代烃、含硝基类 有机物 4 类典型环境污染物的降解情况,以期为该 体系在实际工程应用中提供理论指导和技术支撑。

1 材料与方法

1.1 试剂及仪器

主要试剂:2-氯酚(化学纯)、氧气、高锰酸钾(分 析纯)、氢氧化钠(分析纯)、硫酸(分析纯)、二氯甲 烷(农残级)、盐酸(分析纯)、氯化钠(分析纯)、碳酸 钠(分析纯)、黄腐酸、硝酸铁(分析纯)、硫酸锰(分 析纯)。

主要仪器:纯水机(Spring-R20,厦门锐思捷水纯

化技术有限公司),超纯水机(Synergy UV, Merck Millipore),pH 计[PHBJ-260,梅特勒-托利多仪器(上海)有限公司],水浴恒温振荡器(SHA-B,常州国宇 仪器制造有限公司),高效液相色谱仪(U3000,美国 赛默飞),离子色谱仪(ECO IC,瑞士万通)。高级 氧化反应装置见图 1。主要组成部件包括臭氧发 生器 (10-20g Plasma Block/DAT310,美国 Plasma Technics),HiPOx 反应器(B1000,AptWater Inc,含气体切割装置,可生成微纳米气泡),电子流量 计(CS200,北京七星华创精密电子科技有限责任 公司)。

1.2 试验步骤

试验采用 HiPOx 反应器,反应体系为 2.5 L 的污染物溶液, 2-氯酚初始浓度为 50 mg/L。每组试验设置双平行。

1.2.1 O₃-H₂O₂体系影响因素研究

(1) 臭氧速率

在溶液 pH 为中性, H₂O₂ 浓度为 0 mmol/L 条件 下分别设置臭氧速率为 0、10、20、30、40、50、60 mg/min, 持续通入臭氧30 min, 反应过程中每 30 s 取 1 次样, 并迅速混合等体积的甲醇进行淬灭, 随后测 定剩余污染物浓度。

(2)H₂O₂浓度

在溶液 pH 为中性, 臭氧速率为 40 mg/min 条件 下, 向反应器溶液中添加不同体积 3% 的 H₂O₂, 使 H₂O₂ 浓度分别为 0、0.01、0.02、0.05、0.10、0.20、 0.50、1.00 mmol/L。持续通入臭氧 5 min, 反应过程 中每 30 s 取 1 次样, 并迅速混合等体积的甲醇进行 淬灭, 随后测定剩余污染物浓度。

(3)地下水常见地球化学参数

臭氧速率为40 mg/min, H₂O₂ 浓度为0.50 mmol/L 条件下,设置不同的 pH条件(3、5、7、9、12,以 H₂SO₄和 NaOH 调节),离子浓度梯度(0、50、100、 200、300、500 mg/L),黄腐酸浓度(0、50、100、200、 300、500 mg/L)进行试验。持续通入臭氧5 min,反 应过程中每 30 s 取 1 次样,并迅速混合等体积的甲醇进行淬灭,随后测定剩余污染物浓度。

1.2.2 H₂O₂浓度对 O₃-H₂O₂体系产生的消毒副产物的影响

设置臭氧速率为 40 mg/min, pH 为中性, 向反应 器溶液中添加 3% 的 H₂O₂, 使 H₂O₂浓度分别为 0、 0.01、0.02、0.05、0.10、0.20、0.50、1.00 mmol/L。在 该反应体系中加入初始浓度为 10 mg/L 的溴离子, 取反应终点样品测定反应中产生的溴酸根离子浓 度。持续通入臭氧 5 min, 并迅速混合等体积的甲醇 进行淬灭。

1.2.3 O₃-H₂O₂体系降解不同类型污染物的应用

选取抗生素类(碘帕醇、磺胺甲噁唑),氯酚类 (2,4-二氯酚、2-氯酚),氯代烃(氯苯、四氯乙烯),含 硝基类有机物(硝基苯、4-硝基苯酚)4 类典型的环境 污染物,设置初始浓度为 50 mg/L,臭氧速率为 40 mg/min,H₂O₂浓度为 0.50 mmol/L,研究 O₃-H₂O₂ 体系对不同类型污染物的降解效果。持续通入臭氧 6 min,并迅速混合等体积的甲醇进行淬灭,随后测定 剩余污染物浓度。

1.3 污染物检测方法

2-氯酚浓度使用高效液相色谱仪测定,色谱柱 为 Athena C18-WP 液相色谱柱(250 mm×4.6 mm, 5 μm),检测波长为 254 nm,进样量为 10 μL,柱温 40 ℃,流动相为 *V*(水):*V*(甲醇)=40:60。

溴酸根离子浓度采用离子色谱仪测定,色谱柱 为 Metrosep A Supp 5-250 (4.0 mm×250 mm), 流速 为 0.7 mL/min, 柱温为 25 ℃, 淋洗液为 3.2 mmol/L Na₂CO₃ 与 1.0 mmol/L NaHCO₃ 混合溶液(淋洗液自 动发生器)。

2 结果与讨论

2.1 臭氧速率对降解效率的影响

臭氧速率对降解 2-氯酚的影响如图 2 所示,随着臭氧速率增大,臭氧降解 2-氯酚的反应速率也随之显著增大。臭氧速率为 10、20、30、40、50、60 mg/min 时,对应 2-氯酚完全去除的时间分别为 22.0、10.0、8.0、5.0、4.5、4.0 min。如图 3 所示,去除单位质量 2-氯酚的臭氧消耗量在臭氧速率为 20 和 40 mg/min 时最小,综合考虑时间成本、仪器运行成本以及去除效果,选定臭氧浓度为 40 mg/min 进行后续试验。

2.2 H_2O_2 浓度对 O_3 - H_2O_2 体系降解效率的影响

 O_3 -H₂O₂体系中 H₂O₂浓度对 2-氯酚降解的影 响如图 4 所示。随着 H₂O₂ 的加入, O₃-H₂O₂ 体系相

图 3 不同臭氧速率下臭氧通入量与 2-氯酚消耗量的比值 Fig.3 The ratios of total O₃ injection to 2-CP consumption at different ozone inject rates

比臭氧体系对 2-氯酚的降解速率有所增加。这是因 为 H_2O_2 浓度较低时(小于 0.50 mmol/L), H_2O_2 的存 在可以促进·OH 的链式反应, ·OH 的生成量也随之 增加, 从而提高 2-氯酚的降解率。但当 H_2O_2 浓度较 高时, H_2O_2 本身会与·OH 发生反应, 产生具有抑制 作用的 HO_2 , 所以过量的 H_2O_2 不仅不能加快有机 物 的降解, 相反还会消耗·OH, 使反应速率降 低^[17]。值得注意的是, ·OH 相互之间也会发生淬灭

图 4 O₃- H₂O₂ 体系对 2-氯酚的降解准一级动力学过程 Fig.4 Pseudo-first-order kinetic process of 2-chlorophenol degradation in O₃-H₂O₂ system 反应,大大降低了·OH 的利用率^[14]。表1给出了 O_3 -H₂ O_2 体系中不同的 H_2O_2 浓度条件下,降解 2-氯酚 的准一级动力学反应速率常数。由表1可知,当 H_2O_2 浓度为 0.50 mmol/L 时,反应速率达到最大。

表1 O3-H2O2 体系降解 2-氯酚准一级动力学模型参数

Table 1Pseudo-first-order kinetic model parameters for
degradation of 2-chlorophenol in O3-H2O2 system

H ₂ O ₂ 浓度/(mmol/L)	K_1/\min^{-1}	R^2
H ₂ O ₂ : 0.5	-0.022 04	0.907
O ₃ -H ₂ O ₂ : 0	-0.436 75	0.999
O ₃ -H ₂ O ₂ : 0.05	-0.477 18	0.995
O ₃ -H ₂ O ₂ : 0.10	-0.483 67	0.983
O ₃ -H ₂ O ₂ : 0.20	-0.558 07	0.998
O ₃ -H ₂ O ₂ : 0.50	-0.599 61	0.998
O ₃ -H ₂ O ₂ : 1.00	-0.483 26	0.997

由于水质成分的复杂性和运行条件的差异性, 一些研究者发现 H₂O₂ 和臭氧的最优摩尔比在 0.5~ 1.4^[13,20]。同样,天然水体水质成分复杂,这些复杂成 分可能是自由基的引发剂和清除剂,这就导致 H₂O₂ 和臭氧的最优摩尔比与纯水中的理论值存在 差异。所以,在 O₃-H₂O₂ 高级氧化联用工艺实际应 用过程中,应通过具体的对比试验确定 H₂O₂ 和臭氧 的最佳浓度及速率。

2.3 地下水常见地球化学参数对 O₃-H₂O₂ 体系效率的影响

2.3.1 pH

pH 对 O₃-H₂O₂ 体系降解 2-氯酚的影响如图 5 所示。从图 5 可以看出,在酸性条件下降解过程受 到抑制,中性、偏碱性条件下降解过程受到促进,而 当 pH 过高时降解过程再次受到抑制。反应体系中 臭氧的溶解程度、分解速率以及·OH 的生成受水体

的 pH 影响显著,这使得 pH 在高级氧化体系中降解 有机物扮演着重要角色;同时 H₂O₂ 自身也可发生水 解,反应如下式:

$H_2O_2 + H_2O \longleftrightarrow HO_2^- + H_3O^+$

较低的 pH 会导致反应平衡的逆向移动,不利 于·OH 的生成; 而较高的 pH, 又会使 H₂O₂ 容易离解 为 HO₂,有助于形成·OH,强化链式反应^[21]。值得注 意的是,过高的 pH 可促进各类自由基的生成,过多 自由基的存在可能会引发碰撞淬灭作用^[22],因此会 对污染物降解过程产生抑制作用,所以 pH 不宜过高。 2.3.2 常见阴离子

通过在 O₃-H₂O₂体系中设置不同的离子浓度梯 度探究 CI⁻和 CO₃²⁻对 O₃-H₂O₂体系降解 2-氯酚的影 响,结果见图 6。由图 6 可以看出,地下水中常见的 无机盐阴离子 CI⁻、CO₃²⁻/HCO₃对 O₃-H₂O₂体系降 解 2-氯酚均存在不同程度的抑制作用,产生这种现 象的原因主要是阴离子与·OH 发生了反应。CO₃²⁻是 自由基抑制剂,能消耗臭氧产生的·OH,生成惰性的 CO₃^{-.[23-24]}。同时溶液中 CO₃²⁻和 HCO₃存在电离平 衡,HCO₃也是·OH 的重要清除剂,因而抑制 2-氯酚 的降解[碱性条件下 2-氯酚与 2-氯酚与·OH 的反应 速率常数为 1.0×10⁹ L/(mol·s)^[25]]。反应式如下:

Fig.6 Effect of common anions in groundwater on degradation of 2-chlorophenol in O₃-H₂O₂ system

·OH + CO₃²⁻ → OH⁻ + CO₃⁻ $k_1 = 4.2 \times 10^8 \text{ L/(mol \cdot s)}$ ·OH + HCO₃⁻ → OH⁻ + HCO₃⁻ $k_2 = 1.5 \times 10^7 \text{ L/(mol \cdot s)}$ Cl⁻也会消耗水中部分·OH^[21],反应过程如下: Cl⁻ + ·OH → ClOH⁻ $k_1 = 4.3 \times 10^9 \text{ L/(mol \cdot s)}$ ClOH⁻ · +H⁺ → Cl · +H₂O $k_2 = 2.1 \times 10^9 \text{ L/(mol \cdot s)}$ ClOH⁻ · +Cl⁻ → Cl₂⁻ · +OH⁻ $k_3 = 1.1 \times 10^5 \text{ L/(mol \cdot s)}$

2.3.3 有机质

腐殖酸是水体中常见的有机质,通过在 O₃-H₂O₂体系中设置不同的黄腐酸浓度梯度探究腐殖 质对 O₃-H₂O₂体系降解 2-氯酚的影响,结果如图 7 所示。从图 7 可以看出,当在 O₃-H₂O₂体系中加入 黄腐酸时,会抑制 2-氯酚的降解,且随着黄腐酸浓度 增大,抑制作用越明显。这与杨波等^[26] 对磁性卤氧 化铋耦合过硫酸盐催化光降解酸性橙 7(AO7)的研 究结果一致,由于黄腐酸的加入能够快速捕获臭氧 和·OH,从而抑制目标污染物的降解。

H₂O₂ 浓度对 O₃-H₂O₂ 体系产生消毒副产物的 影响

含溴水体中, 溴离子可被氧化生成溴酸根离子, 可能的产生路径如图 8 所示。O₃-H₂O₂ 体系在不同 H₂O₂ 浓度条件下的溴酸根生成情况如图 9 所示。 由图 9 可知, 随着 H₂O₂ 加入反应体系溴酸根离子的 浓度逐渐减小, 当 H₂O₂ 浓度为 0.5 mmol/L 时, 溴酸

根离子浓度显著低于单独臭氧体系,这与 Hübner 等^[16,19]的研究结果一致。这可能是由于随着 H₂O₂的加入加快了臭氧的消耗,减少了臭氧分子的 氧化作用,而过量的H₂O₂也可以还原HOBr/Br⁻,从 而减少溴酸盐的产生^[18,27]。

O₃-H₂O₂ system

2.5 O₃-H₂O₂体系在有机污染地下水中的应用

O₃-H₂O₂体系针对不同类型污染物的降解效果 如图 10 所示。从图 10 可以看出,O₃-H₂O₂体系对抗 生素类、氯酚类、氯代烃、含硝基类有机物这 4 类典 型的环境污染物都具有较好的降解效果。由于良好 的亲电性, 臭氧能够选择性地氧化芳环化合物、烯 烃、游离胺和还原性硫化合物等有机物,而对另外不 具有这些富电子基团的有机物氧化能力有限,O₃-H₂O₂体系中生成的·OH则可以进一步氧化分解这 些有机物^[29]。因此,O₃-H₂O₂体系具有很强的氧化能 力,针对实际环境中复杂的有机物混合污染情况具 有很好的应用前景。

图 10 O₃- H₂O₂ 体系降解不同类型污染物的应用 Fig.10 Application of O₃-H₂O₂ system to degrade different types of pollutants

3 结论

(1)HiPOx(B1000)装置通过气体切割装置产生
 臭氧微纳米气泡,臭氧速率为40 mg/min, H₂O₂浓度
 为 0.50 mmol/L, pH 为9时, O₃-H₂O₂体系对 2-氯酚
 的降解率最高。

(2) CI⁻、CO₃²⁻/HCO₃⁻、天然有机质均对O₃-H₂O₂体系具有抑制作用。

(3)基于臭氧微纳米气泡的 O₃-H₂O₂ 氧化体系 相比于单独臭氧体系可以有效减少消毒副产物溴酸 根的生成。

(4)基于臭氧微纳米气泡的 O₃-H₂O₂氧化体系 针对抗生素类、氯酚类、氯代烃、含硝基类有机物这 4 类典型的环境污染物均具有很好的氧化降解 效果。

参考文献

[1] 宋志慧, 孙欣欣, 李捍东.斑马鱼对3种氯酚的富集作用及其
 SOD酶活性应激反应研究[J]. 环境工程技术学报, 2014, 4(4): 287-292.
 SONG Z H, SUN X X, LI H D. Study on bioconcentration of

three chlorophenols in zebrafish and SOD activity stress action[J]. Journal of Environmental Engineering Technology, 2014, 4(4): 287-292.

- [2] MARTÍNEZ-JARDINES M, MARTÍNEZ-HERNÁNDEZ S, TEXIER A C, et al. 2-Chlorophenol consumption by cometabolism in nitrifying SBR reactors[J]. Chemosphere, 2018, 212: 41-49.
- [3] 任越中,张嘉雯,魏健,等铈负载改性天然沸石催化臭氧氧化 水中青霉素G[J]. 环境工程技术学报, 2019, 9(1): 28-35.
 REN Y Z, ZHANG J W, WEI J, et al. Catalytic ozonation of penicillin G in aqueous phase using modified natural zeolite supported cerium[J]. Journal of Environmental Engineering Technology, 2019, 9(1): 28-35.
- 【4】张佳丽,魏健,任越中,等.臭氧氧化降解水中青霉素G特性和动力学特征[J].环境科学研究,2019,32(7):1231-1238.
 ZHANG J L, WEI J, REN Y Z,et al. Degradation charactistics and kinetics of penicillin G in water by ozone oxidation[J].
 Research of Environmental Sciences, 2019, 32(7): 1231-1238.
- [5] 宋江燕,李方鸿,吴根义,等.氯咪巴唑在臭氧降解过程中的影响因素及其降解产物[J].环境科学研究,2022,35(2):478-487.

SONG J Y, LI F H, WU G Y,et al. Degradation of climbazole by ozonation: influencing factors and degradation products[J]. Research of Environmental Sciences, 2022, 35(2): 478-487.

[6] 马艳, 张鑫, 韩小蒙, 等.臭氧微纳米气泡技术在水处理中的应用进展[J]. 净水技术, 2019, 38(8): 64-67.
 MA Y, ZHANG X, HAN X M, et al. Application of micro-nano ozone bubble technology in water treatment: a review[J]. Water Purification Technology, 2019, 38(8): 64-67.

- [7] ZHENG T L, WANG Q H, ZHANG T, et al. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry[J]. Journal of Hazardous Materials, 2015, 287: 412-420.
- [8] HU L M, XIA Z R. Application of ozone micro-nano-bubbles to groundwater remediation[J]. Journal of Hazardous Materials, 2018, 342: 446-453.
- [9] 周洪政, 刘平, 张静, 等.微气泡臭氧催化氧化-生化耦合处理难 降解含氮杂环芳烃[J]. 中国环境科学, 2017, 37(8): 2978-2985.

ZHOU H Z, LIU P, ZHANG J, et al. Removal of refractory nitrogen-containing heterocyclic aromatics by combination treatment of microbubble catalytic ozonation and biological process[J]. China Environmental Science, 2017, 37(8): 2978-2985.

[10] 夏志然, 胡黎明, 赵清源. 地下水原位修复的臭氧微纳米气泡 技术研究[J]. 地下空间与工程学报, 2014, 10(增刊2): 2006-2011.

XIA Z R, HU L M, ZHAO Q Y. Ozone micro-nano bubble technology in *in situ* groundwater remediation[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(Suppl 2): 2006-2011.

- [11] KERFOOT W B. Microbubble ozone sparging for chlorinated ethene spill remediation[C]//Innovative strategies for subsurface cleanup. Washington DC, 2003: 86-108.
- [12] BOURGIN M, BOROWSKA E, HELBING J, et al. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O₃/H₂O₂: kinetics of micropollutant abatement, transformation product and bromate formation in a surface water[J]. Water Research, 2017, 122: 234-245.
- ORMAD P, CORTES S, PUIG A, et al. Degradation of organochloride compounds by O₃ and O₃/H₂O₂[J]. Water Research, 1997, 31(9): 2387-2391.
- [14] 林国峰, 孙军益, 熊正龙, 等. 臭氧联合过氧化氢(O₃/H₂O₂)降解 水中甲基托布津[J]. 净水技术, 2017, 36(增刊2): 103-108.
 LIN G F, SUN J Y, XIONG Z L, et al. Degradation of thiophanate-methyl in water by O₃/H₂O₂[J]. Water Purification Technology, 2017, 36(Suppl 2): 103-108.
- [15] MIZUNO T, HAN F, XU J, et al. Performance evaluation of ozonation and an ozone/hydrogen peroxide process toward development of a new sewage treatment process: focusing on organic compounds and emerging contaminants[J]. Ozone:Science & Engineering, 2018, 40(5): 339-355.
- [16] HÜBNER U, ZUCKER I, JEKEL M. Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents[J]. Journal of Water Reuse and Desalination, 2015, 5(1): 8-16.
- [17] 孟宁, 孙贤波, 唐林.O₃/H₂O₂氧化法处理油田采油废水的试验 研究[J]. 工业水处理, 2019, 39(8): 86-89.
 MENG N, SUN X B, TANG L. Study on experiment of oilextraction wastewater treatment by O₃/H₂O₂ oxidation process[J].

Industrial Water Treatment, 2019, 39(8): 86-89.

- [18] LIANG S, YATES R S, DAVIS D V, et al. Treatability of MTBE-contaminated groundwater by ozone and peroxone[J]. Journal:American Water Works Association, 2001, 93(6): 110-120.
- [19] YU J W, WANG Y J, WANG Q, et al. Implications of bromate depression from H₂O₂ addition during ozonation of different bromide-bearing source waters[J]. Chemosphere, 2020, 252: 126596.
- [20] ANDALURI G, SURI R. Removal of 1, 4-dioxane and volatile organic compounds from groundwater using ozone-based advanced oxidation process[J]. Ozone:Science & Engineering, 2017, 39(6): 423-434.
- [21] 张静, 杜亚威, 茹星瑶, 等.pH对微气泡臭氧氧化处理染料废水 影响[J]. 环境工程学报, 2016, 10(2): 742-748.
 ZHANG J, DU Y W, RU X Y, et al. Effect of pH on microbubble ozonation treatment of dyeing wastewater[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 742-748.
- [22] 姚立忱, 王艺林, 刘伟, 等, 臭氧催化氧化技术深度处理煤气废水的实验研究[J]. 工业水处理, 2013, 33(5): 50-52.
 YAO L C, WANG Y L, LIU W, et al. Experimental research on the advanced treatment of coal gasification wastewater by catalytic ozonation technology[J]. Industrial Water Treatment, 2013, 33(5): 50-52.
- [23] WANG T, ZHANG J, SONG Y Q, et al. Role of micro-size zero valence iron as particle electrodes in a three-dimensional heterogeneous electro-ozonation process for nitrobenzene degradation[J]. Chemosphere, 2021, 276: 130264.

- [24] KASPRZYK-HORDERN B, ZIÓŁEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B:Environmental, 2003, 46(4): 639-669.
- [25] 董文博, 王淑惠, 姚思德, 等.水相中 OH, H和e_{aq} 与2-氯酚反应 机理研究[J]. 高等学校化学学报, 2002, 23(10): 1896-1900.
 DONG W B, WANG S H, YAO S D, et al. Mechanism studies on reactions of OH, H and e_{aq} with 2-chlorophenol in aqueous solutions[J]. Chemical Research in Chinese Universities, 2002, 23(10): 1896-1900.
- [26] 杨波,张永丽,郭洪光,等磁性卤氧化铋耦合过硫酸盐催化光 降解AO7[J].黑龙江大学自然科学学报,2017,34(2):196-201.
 YANG B, ZHANG Y L, GUO H G, et al. Persulfate-assisted photocatalytic degradation of AO7 by magnetic bismuth oxyhalide compounds[J]. Journal of Natural Science of Heilongjiang University, 2017, 34(2): 196-201.
- [27] GUO Y, ZHAO E Z, WANG J, et al. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O₃/H₂O₂ and electro-peroxone processes[J]. Journal of Hazardous Materials, 2020, 389: 121829.
- [28] SOLTERMANN F, ABEGGLEN C, TSCHUI M, et al. Options and limitations for bromate control during ozonation of wastewater[J]. Water Research, 2017, 116: 76-85.
- [29] 许可, 贲伟伟, 强志民. 羟胺促进臭氧氧化降解阿特拉津[J]. 环境化学, 2017, 36(2): 207-213.
 XU K, BEN W W, QIANG Z M. Ozonation of atrazine enhanced by hydroxylamine[J]. Environmental Chemistry, 2017, 36(2): 207-213. □