Volume 10 Issue 3
May  2020
Turn off MathJax
Article Contents
WANG Lei, JIN Wenjing, ZHI Guorui, ZHANG Yuzhe, GUO Sicong, SUN Jianzhong. Research progress of determination methods of atmospheric brown carbon[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 346-361. doi: 10.12153/j.issn.1674-991X.20190157
Citation: WANG Lei, JIN Wenjing, ZHI Guorui, ZHANG Yuzhe, GUO Sicong, SUN Jianzhong. Research progress of determination methods of atmospheric brown carbon[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 346-361. doi: 10.12153/j.issn.1674-991X.20190157

Research progress of determination methods of atmospheric brown carbon

doi: 10.12153/j.issn.1674-991X.20190157
More Information
  • Corresponding author: ZHI Guorui E-mail: zhigr@craes.org.cn
  • Received Date: 2019-09-04
  • Publish Date: 2020-05-20
  • Atmospheric brown carbon (BrC) is a category of organic carbon (OC) that is light-absorbing in carbon aerosols. Compared with black carbon (BC), BrC absorption capacity grows faster with shorter wavelengths, and has become one of the hot spots in the research field of atmospheric aerosol energy budget. Because BrC comes from a wide range of sources and does not specifically refer to a single substance, there are no widely-accepted standard methods or reference materials for the determination of BrC. Various approaches for the determination of BrC appearing in literature were described, including the chemical method of separating BrC by solvent extraction, the optical method of distinguishing the absorption contribution of BrC from total based on the difference in light-absorption features between BrC and BC, the thermal/optical method of optically separating BrC from other substances in a few wavelengths on the traditional thermal/optical carbon analyzer in reference to the difference of thermal stability between BrC and BC, and the mass spectrometry of characterizing BrC at molecular-level. The principle, characteristics, application and research progress of the methods were systematically summarized and reviewed. It was also noted that almost all the quantitative determination methods currently used for BrC qua.pngication were exploratory and had great limitations. Optimization measures were needed to make up for the defects of individual methods, including the need for an inclusive methodology that did not exclude diversity and independence of existing methods, in order to make different methods intercomparable to a certain extent.

     

  • loading
  • [1]
    SEINFELD J H, PANDIS S N . Atmospheric chemistry and physics:from air pollution to climate change[M]. 2nd ed.New York:John Wiley & Sons, 2006.
    [2]
    PÖSCHL U . Atmospheric aerosols:composition,transformation,climate and health effects[J]. Angewandte Chemie International Edition, 2005,44(46):7520-7540.
    doi: 10.1002/anie.200501122 pmid: 16302183
    [3]
    LOHMANN U, FEICHTER J . Global indirect aerosol effects:a review[J]. Atmospheric Chemistry and Physics, 2005,5:715-737.
    [4]
    MAUDERLY J L, CHOW J C . Health effects of organic aerosols[J]. Inhalation Toxicology, 2008,20(3):257-288.
    doi: 10.1080/08958370701866008 pmid: 18300047
    [5]
    FINLAYSON-PITTS B J, PITTS J N . Chemistry of the upper and lower atmosphere[M]. San Diego: Academic Press, 2000: 349-435.
    [6]
    CHUNG S H, SEINFELD J H . Global distribution and climate forcing of carbonaceous aerosols[J]. Journal of Geophysical Research:Atmospheres, 2002,107(Suppl 19):1-33.
    [7]
    KRIVǍCSY Z, KISS G, VARGA B , et al. Study of humic-like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis[J]. Atmospheric Environment, 2000,34(25):4273-4281.
    [8]
    KIRCHSTETTER T W, NOVAKOV T, HOBBS P V . Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon[J]. Journal of Geophysical Research:Atmospheres, 2004,109:D21208.
    [9]
    支国瑞, 蔡竟, 杨俊超 , 等. 棕色碳气溶胶来源、性质、测量与排放估算[J]. 环境科学研究, 2015,28(12):1797-1814.

    ZHI G R, CAI J, YANG J C , et al. Origin,properties,measurement and emission estimation of brown carbon aerosols[J]. Research of Environmental Sciences, 2015,28(12):1797-1814.
    [10]
    ANDREAE M O, GELENCSĚR A . Black carbon or brown cabon?the nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics Discussions, 2006,6:3131-3148.
    [11]
    KIRCHSTETTER T W, THATCHER T L . Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation[J]. Atmospheric Chemistry and Physics Discussions, 2012,12(2):5803-5816.
    [12]
    JO D S, PARK R J, LEE S , et al. A global simulation of brown carbon:implications for photochemistry and direct radiative effect[J]. Atmospheric Chemistry and Physics, 2016,16(5):3413-3432.
    [13]
    FENG Y, RAMANATHAN V, KOTAMARTHI V R . Brown carbon:a significant atmospheric absorber of solar radiation[J]. Atmospheric Chemistry and Physics, 2013,13(17):8607-8621.
    doi: 10.1016/j.chemosphere.2020.126350 pmid: 32151806
    [14]
    孙建中, 支国瑞, 陈颖军 , 等. 居民生活用煤和生物质棕色碳排放因子研究[J]. 环境科学与技术, 2016,39(增刊1):338-345.

    SUN J Z, ZHI G R, CHEN Y J , et al. Measurement of brown carbon emission factors for household use of coal and biomass in China[J]. Environmental Science & Technology, 2016,39(Suppl 1):338-345.
    [15]
    ZHANG Y, FORRISTER H, LIU J , et al. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere[J]. Nature Geoscience, 2017,10(7):486-489.
    [16]
    LEI Y, SHEN Z, ZHANG T , et al. Optical source profiles of brown carbon in size-resolved particulate matter from typical domestic biofuel burning over Guanzhong Plain,China[J]. Science of the Total Environment, 2018, 622/623:244-251.
    doi: 10.1016/j.scitotenv.2017.11.353 pmid: 29216465
    [17]
    CHAKRABARTY R K, MOOSMÜLLER H, CHEN L W A , et al. Brown carbon in tar balls from smoldering biomass combustion[J]. Atmospheric Chemistry and Physics, 2010,10(13):6363-6370.
    [18]
    闫才青, 郑玫, 张远航 . 大气棕色碳的研究进展与方向[J]. 环境科学, 2014,35(11):4404-4414.
    pmid: 25639123

    YAN C Q, ZHENG M, ZHANG Y H . Research progress and direction of atmospheric brown carbon[J]. Environmental Science, 2014,35(11):4404-4414. pmid: 25639123
    [19]
    LASKIN A, LASKIN J, NIZKORODOV S A . Chemistry of atmospheric brown carbon[J]. Chemical Reviews, 2015,115(10):4335-4382.
    doi: 10.1021/cr5006167 pmid: 25716026
    [20]
    YAN J, WANG X, GONG P , et al. Review of brown carbon aerosols:recent progress and perspectives[J]. Science of the Total Environment, 2018,634:1475-1485.
    doi: 10.1016/j.scitotenv.2018.04.083 pmid: 29710646
    [21]
    姜鸿兴, 李军, 唐娇 , 等. 高分辨质谱技术在大气棕色碳研究中的应用[J]. 分析化学, 2018,46(10):1528-1538.

    JIANG H X, LI J, TANG J , et al. Applications of high resolution mass spectrometry in studies of brown carbon[J]. Chinese Journal of Analytical Chemistry, 2018,46(10):1528-1538.
    [22]
    AROLA A, SCHUSTER G, MYHRE G , et al. Inferring absorbing organic carbon content from AERONET data[J]. Atmospheric Chemistry and Physics, 2011,11(1):215-225.
    [23]
    WANG L, LI Z, TIAN Q , et al. Estimate of aerosol absorbing components of black carbon,brown carbon,and dust from ground-based remote sensing data of sun-sky radiometers[J]. Journal of Geophysical Research:Atmospheres, 2013,118(12):6534-6543.
    [24]
    FECZKO T, PUXBAUM H, KASPER-GIEBL A , et al. Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe[J]. Journal of Geophysical Research:Atmospheres, 2007,112:D23S10.
    [25]
    ZHENG G, HE K, DUAN F , et al. Measurement of humic-like substances in aerosols:a review[J]. Environmental Pollution, 2013,181:301-314.
    doi: 10.1016/j.envpol.2013.05.055 pmid: 23830737
    [26]
    KISS G, VARGA B, GALAMBOS I , et al. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol[J]. Journal of Geophysical Research:Atmospheres, 2002,107(21):1-8.
    [27]
    DECESARI S, FACCHINI M C, FUZZI S , et al. Characterization of water-soluble organic compounds in atmospheric aerosol:a new approach[J]. Journal of Geophysical Research:Atmospheres, 2000,105(Suppl 1):1481-1489.
    doi: 10.1029/1999JD900950
    [28]
    LUKǍCS H, GELENCSĚR A, HAMMER S , et al. Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe[J]. Journal of Geophysical Research:Atmospheres, 2007,112:D23S18.
    [29]
    VARGA B, KISS G, GANSZKY I , et al. Isolation of water-soluble organic matter from atmospheric aerosol[J]. Talanta, 2001,55(3):561-572.
    doi: 10.1016/s0039-9140(01)00446-5 pmid: 18968401
    [30]
    KRIVǍCSY Z, HOFFER A, SǍRVǍRI Z , et al. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites[J]. Atmospheric Environment, 2001,35(36):6231-6244.
    doi: 10.1016/S1352-2310(01)00467-8
    [31]
    EMMENEGGER C, REINHARDT A, HUEGLIN C , et al. Evaporative light scattering:a novel detection method for the quantitative analysis of humic-like substances in aerosols[J]. Environmental Science and Technology, 2007,41(7):2473-2478.
    doi: 10.1021/es061095t pmid: 17438802
    [32]
    SAMBUROVA V, DIDENKO T, KUNENKOV E , et al. Functional group analysis of high-molecular weight compounds in the water-soluble fraction of organic aerosols[J]. Atmospheric Environment, 2007,41(22):4703-4710.
    doi: 10.1016/j.atmosenv.2007.03.033
    [33]
    FAN X, SONG J, PENG P A . Temporal variations of the abundance and optical properties of water soluble humic-like substances(HULIS) in PM2.5 at Guangzhou,China[J]. Atmospheric Research, 2016, 172/173:8-15.
    doi: 10.1016/j.atmosres.2015.12.024
    [34]
    SAMBUROVA V, ZENOBI R, KALBERER M . Characterization of high molecular weight compounds in urban atmospheric particles[J]. Atmospheric Chemistry and Physics, 2005,5(8):2163-2170.
    doi: 10.1021/es5024674 pmid: 25184338
    [35]
    DUARTE R M B O, SANTOS E B H, PIO C A , et al. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances[J]. Atmospheric Environment, 2007,41(37):8100-8113.
    doi: 10.1016/j.atmosenv.2007.06.034
    [36]
    SALMA I, OCSKAY R, CHI X , et al. Sampling artefacts,concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment[J]. Atmospheric Environment, 2007,41(19):4106-4118.
    doi: 10.1016/j.atmosenv.2007.01.027
    [37]
    KRIVǍCSY Z, KISS G, CEBURNIS D , et al. Study of water-soluble atmospheric humic matter in urban and marine environments[J]. Atmospheric Research, 2008,87(1):1-12.
    doi: 10.1016/j.atmosres.2007.04.005
    [38]
    LIN P, ENGLING G, YU J Z . Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region,China[J]. Atmospheric Chemistry and Physics, 2010,10(14):6487-6500.
    doi: 10.5194/acp-10-6487-2010
    [39]
    SONG J, HE L, PENG P A , et al. Chemical and isotopic composition of humic-like substances(HULIS) in ambient aerosols in Guangzhou,South China[J]. Aerosol Science and Technology, 2012,46(5):533-546.
    doi: 10.1080/02786826.2011.645956
    [40]
    MO Y, LI J, LIU J , et al. The influence of solvent and pH on determination of the light absorption properties of water-soluble brown carbon[J]. Atmospheric Environment, 2017,161:90-98.
    doi: 10.1016/j.atmosenv.2017.04.037
    [41]
    FAN X, WEI S, ZHU M , et al. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels[J]. Atmospheric Chemistry and Physics, 2016,16(20):13321-13340.
    doi: 10.5194/acp-16-13321-2016
    [42]
    PIO C A, LEGRAND M, OLIVEIRA T , et al. Climatology of aerosol composition(organic versus inorganic) at nonurban sites on a west-east transect across Europe[J]. Journal of Geophysical Research:Atmospheres 2007,112:D23S02.
    [43]
    BADUEL C, VOISIN D, JAFFREZO J L . Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments[J]. Atmospheric Chemistry and Physics, 2010,10(9):4085-4095.
    [44]
    EL-HADDAD I, MARCHAND N, TEMIME-ROUSSEL B , et al. Insights into the secondary fraction of the organic aerosol in a mediterranean urban area:Marseille[J]. Atmospheric Chemistry and Physics, 2011,11(5):2059-2079.
    [45]
    DECESARI S, SANDRO F, FACCHINI M C , et al. Characterization of the organic composition of aerosols from Rondônia,Brazil,during the LBA-SMOCC 2002 experiment and its representation through model compounds[J]. Atmospheric Chemistry and Physics, 2006,6(2):375-402.
    [46]
    SULLIVAN A P, WEBER R J . Chemical characterization of the ambient organic aerosol soluble in water:isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin[J]. Journal of Geophysical Research:Atmospheres, 2006,111:D05314.
    [47]
    BADUEL C, VOISIN D, JAFFREZO J L . Comparison of analytical methods for humic like substances(HULIS) measurements in atmospheric particles[J]. Atmospheric Chemistry and Physics, 2009,9(16):5949-5962.
    [48]
    LIMBECK A, HANDLER M, NEUBERGER B , et al. Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples[J]. Analytical Chemistry, 2005,77(22):7228-7293.
    doi: 10.1021/ac050953l pmid: 16285677
    [49]
    FAN X, SONG J, PENG P A . Comparison of isolation and qua.pngication methods to measure humic-like substances(HULIS) in atmospheric particles[J]. Atmospheric Environment, 2012,60:366-374.
    [50]
    POLIDORI A, TURPIN B J, DAVIDSON C I , et al. Organic PM2.5:fractionation by polarity,FTIR spectroscopy,and OM/OC ratio for the Pittsburgh aerosol[J]. Aerosol Science and Technology, 2008,42(3):233-246.
    [51]
    GRABER E R, RUDICH Y . Atmospheric HULIS:how humic-like are they?a comprehensive and critical review[J]. Atmospheric Chemistry and Physics, 2006,6(3):729-753.
    [52]
    MOSCHOS V, KUMAR N K, DAELLENBACH K R , et al. Source apportionment of brown carbon absorption by coupling ultraviolet-visible spectroscopy with aerosol mass spectrometry[J]. Environmental Science & Technology Letters, 2018,5(6):302-308.
    [53]
    XIE M, HAYS M D, HOLDER A L . Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions[J]. Scie.pngic Reports, 2017,7(1):7318.
    doi: 10.1038/s41598-017-06981-8 pmid: 28779152
    [54]
    TEICH M, van PINXTEREN D, WANG M , et al. Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China[J]. Atmospheric Chemistry and Physics, 2017,17(3):1653-1672.
    [55]
    SHEN Z, ZHANG Q, CAO J , et al. Optical properties and possible sources of brown carbon in PM2.5 over Xi’an,China[J]. Atmospheric Environment, 2016,150:322-330.
    [56]
    SHEN Z, LEI Y, ZHANG L , et al. Methanol extracted brown carbon in PM2.5 over Xi’an,China:seasonal variation of optical properties and sources ide.pngication[J]. Aerosol Science and Engineering, 2017,1(2):57-65.
    doi: 10.1007/s41810-017-0007-z
    [57]
    SATISH R V, SHAMJAD P M, THAMBAN N M , et al. Temporal characteristics of brown carbon over the Central Indo-Gangetic Plain[J]. Environmental Science & Technology, 2017,51(12):6765-6772.
    doi: 10.1021/acs.est.7b00734 pmid: 28520413
    [58]
    LIN P, BLUVSHTEIN N, RUDICH Y , et al. Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event[J]. Environmental Science & Technology, 2017,51(20):11561-11570.
    doi: 10.1021/acs.est.7b02276 pmid: 28759227
    [59]
    CHENG Y, HE K B, ENGLING G , et al. Brown and black carbon in Beijing aerosol:implications for the effects of brown coating on light absorption by black carbon[J]. Science of the Total Environment, 2017, 599/600:1047-1055.
    doi: 10.1016/j.scitotenv.2017.05.061 pmid: 28511349
    [60]
    CHENG Y, HE K B, DU Z Y , et al. The characteristics of brown carbon aerosol during winter in Beijing[J]. Atmospheric Environment, 2016,127:355-364.
    doi: 10.1016/j.scitotenv.2020.136820 pmid: 32018973
    [61]
    LIU J, SCHEUER E, DIBB J , et al. Brown carbon aerosol in the North American continental troposphere:sources,abundance,and radiative forcing[J]. Atmospheric Chemistry and Physics, 2015,15(14):7841-7858.
    doi: 10.5194/acp-15-7841-2015
    [62]
    HECOBIAN A, ZHANG X, ZHENG M , et al. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States[J]. Atmospheric Chemistry and Physics, 2010,10(13):5965-5977.
    doi: 10.5194/acp-10-5965-2010
    [63]
    ZHANG X, LIN Y H, SURRATT J D , et al. Sources,composition and absorption Ångström exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin[J]. Environmental Science & Technology, 2013,47(8):3685-3693.
    doi: 10.1021/es305047b pmid: 23506531
    [64]
    ZHU C S, CAO J J, HUANG R J , et al. Light absorption properties of brown carbon over the southeastern Tibetan Plateau[J]. Science of the Total Environment, 2018,625:246-251.
    doi: 10.1016/j.scitotenv.2017.12.183 pmid: 29289772
    [65]
    HUANG R J, YANG L, CAO J , et al. Brown carbon aerosol in urban Xi’an,Northwest China:the composition and light absorption properties[J]. Environmental Science & Technology, 2018,52(12):6825-6833.
    doi: 10.1021/acs.est.8b02386 pmid: 29799735
    [66]
    FORRISTER H, LIU J, SCHEUER E , et al. Evolution of brown carbon in wildfire plumes[J]. Geophysical Research Letters, 2015,42(11):4623-4630.
    doi: 10.1002/grl.v42.11
    [67]
    DU Z, HE K, CHENG Y , et al. A yearlong study of water-soluble organic carbon in Beijing: Ⅱ.light absorption properties[J]. Atmospheric Environment, 2014,89:235-241.
    doi: 10.1016/j.atmosenv.2014.02.022
    [68]
    LIN P, RINCON A G, KALBERER M , et al. Elemental composition of HULIS in the Pearl River Delta Region,China:results inferred from positive and negative electrospray high resolution mass spectrometric data[J]. Environmental Science & Technology, 2012,46(14):7454-7462.
    doi: 10.1021/es300285d pmid: 22702400
    [69]
    LIN P, YU J Z, ENGLING G , et al. Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia:a study by ultra-high-resolution mass spectrometry[J]. Environmental Science & Technology, 2012,46(24):13118-13127.
    doi: 10.1021/es303570v pmid: 23153227
    [70]
    LIU J, BERGIN M, GUO H , et al. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption[J]. Atmospheric Chemistry and Physics, 2013,13(24):12389-12404.
    doi: 10.5194/acp-13-12389-2013
    [71]
    CHEN Y, BOND T C . Light absorption by organic carbon from wood combustion[J]. Atmospheric Chemistry and Physics, 2010,10(4):1773-1787.
    [72]
    LACK D A, LANGRIDGE J M . On the attribution of black and brown carbon light absorption using the Ångström exponent[J]. Atmospheric Chemistry and Physics, 2013,13(20):10535-10543.
    doi: 10.5194/acp-13-10535-2013
    [73]
    SUN J, ZHI G, HITZENBERGER R , et al. Emission factors and light absorption properties of brown carbon from household coal combustion in China[J]. Atmospheric Chemistry and Physics, 2017,17(7):4769-4780.
    doi: 10.5194/acp-17-4769-2017
    [74]
    BOND T C, BERGSTROM R W . Light absorption by carbonaceous particles:an investigative review[J]. Aerosol Science and Technology, 2006,40(1):27-67.
    doi: 10.1080/02786820500421521
    [75]
    BOND T C, ANDERSON T L, CAMPBELL D . Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols[J]. Aerosol Science & Technology, 1999,30:582-600.
    [76]
    HANSEN A D A, ROSEN H, NOVAKOV T . The aethalometer:an instrument for the real-time measurement of optical absorption by aerosol particles[J]. Science of the Total Environment, 1984,36:191-196.
    doi: 10.1016/0048-9697(84)90265-1
    [77]
    BOND T C . Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion[J]. Geophysical Research Letters, 2001,28(21):4075-4078.
    doi: 10.1029/2001GL013652
    [78]
    蔡竟, 支国瑞, 陈颖军 , 等. 中国秸杆焚烧及民用燃煤棕色碳排放的初步研究[J]. 环境科学研究, 2014,27(5):455-461.

    CAI J, ZHI G R, CHEN Y J , et al. A preliminary study on brown carbon emissions from open agricultural biomass burning and residential coal combustion in China[J]. Research of Environmental Sciences, 2014,27(5):455-461.
    [79]
    YANG M, HOWELL S G, ZHUANG J , et al. Attribution of aerosol light absorption to black carbon,brown carbon,and dust in China:interpretations of atmospheric measurements during EAST-AIRE[J]. Atmospheric Chemistry and Physics, 2009,9(6):2035-2050.
    [80]
    MARTINSSON J, ERIKSSON A C, NIELSEN I E , et al. Impacts of combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol[J]. Environmental Science & Technology, 2015,49(24):14663-14671.
    doi: 10.1021/acs.est.5b03205 pmid: 26561964
    [81]
    OLSON M R, GARCIA M V, ROBINSON M A , et al. Investigation of black and brown carbon multiplewavelength-dependent light absorption from biomass and fossil fuel combustion source emissions[J]. Journal of Geophysical Research:Atmospheres, 2015,120(13):6682-6697.
    [82]
    CHOW J C, WATSON J G, DORAISWAMY P , et al. Aerosol light absorption,black carbon,and elemental carbon at the Fresno Supersite,California[J]. Atmospheric Research, 2009,93(4):874-887.
    doi: 10.1210/endo-93-4-874 pmid: 4728220
    [83]
    LACK D A, CAPPA C D . Impact of brown and clear carbon on light absorption enhancement,single scatter albedo and absorption wavelength dependence of black carbon[J]. Atmospheric Chemistry and Physics, 2010,10(9):4207-4220.
    doi: 10.5194/acp-10-4207-2010
    [84]
    LIU D, ALLAN J D, YOUNG D E , et al. Size distribution,mixing state and source apportionment of black carbon aerosol in London during wintertime[J]. Atmospheric Chemistry and Physics, 2014,14(18):10061-10084.
    doi: 10.5194/acp-14-10061-2014
    [85]
    LIU D, TAYLOR J W, YOUNG D E , et al. The effect of complex black carbon microphysics on the determination of the optical properties of brown carbon[J]. Geophysical Research Letters, 2015,42(2):613-619.
    doi: 10.1002/2014GL062443
    [86]
    MOOSMÜLLER H, CHAKRABARTY R K, EHLERS K M , et al. Absorption Ångström coefficient,brown carbon,and aerosols:basic concepts,bulk matter,and spherical particles[J]. Atmospheric Chemistry and Physics, 2011,11(3):1217-1225.
    doi: 10.5194/acp-11-1217-2011
    [87]
    MOOSMÜLLER H, ARNOTT W P . Particle optics in the Rayleigh regime[J]. Journal of the Air & Waste Management Association, 2009,59(9):1028-1031.
    doi: 10.3155/1047-3289.59.9.1028 pmid: 19785268
    [88]
    GYAWALI M, ARNOTT W P, LEWIS K , et al. In situ aerosol optics in Reno,NV,USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption[J]. Atmospheric Chemistry and Physics, 2009,9(3):8007-8015.
    doi: 10.5194/acp-9-8007-2009
    [89]
    BAHADUR R, PRAVEEN P S, XU Y , et al. Solar absorption by elemental and brown carbon determined from spectral observations[J]. Proceedings of the National Academy of Sciences, 2012,109(43):17366-17371.
    doi: 10.1073/pnas.1205910109 pmid: 23045698
    [90]
    YUAN J F, HUANG X F, CAO L M , et al. Light absorption of brown carbon aerosol in the PRD region of China[J]. Atmospheric Chemistry and Physics, 2016,16(3):1433-1443.
    doi: 10.5194/acp-16-1433-2016
    [91]
    WANG J, NIE W, CHENG Y , et al. Light absorption of brown carbon in eastern China based on 3-year multi-wavelength aerosol optical property observations and an improved absorption Ångström exponent segregation method[J]. Atmospheric Chemistry and Physics, 2018,18(12):9061-9074.
    doi: 10.5194/acp-18-9061-2018
    [92]
    POKHREL R P, BEAMESDERFER E R, WAGNER N L , et al. Relative importance of black carbon,brown carbon,and absorption enhancement from clear coatings in biomass burning emissions[J]. Atmospheric Chemistry and Physics, 2017,17(8):5063-5078.
    doi: 10.5194/acp-17-5063-2017
    [93]
    LACK D A, RICHARDSON M S, LAW D , et al. Aircraft instrument for comprehensive characterization of aerosol optical properties: Part 2. black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy[J]. Aerosol Science and Technology, 2012,46(5):555-568.
    doi: 10.1080/02786826.2011.645955
    [94]
    DI-LORENZO R A, WASHENFELDER R A, ATTWOOD A R , et al. Molecular-size-separated brown carbon absorption for biomass-burning aerosol at multiple field sites[J]. Environmental Science & Technology, 2017,51(6):3128-3137.
    doi: 10.1021/acs.est.6b06160 pmid: 28199090
    [95]
    ALEXANDER D T L, CROZIER P A, ANDERSON J R . Brown carbon spheres in East Asian outflow and their optical properties[J]. Science, 2008,321:833-836.
    doi: 10.1126/science.1155296 pmid: 18687964
    [96]
    HEINTZENBERG J . Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote arctic locations[J]. Atmospheric Environment, 1982,16(10):2461-2469.
    [97]
    HITZENBERGER R, DUSEK U, BERNER A . Black carbon measurements using an integrating sphere[J]. Journal of Geophysical Research:Atmospheres, 1996,101(14):19601-19606.
    doi: 10.1029/95JD02412
    [98]
    HITZENBERGER R, TOHNO S . Comparison of black carbon(BC) aerosols in two urban areas:concentrations and size distributions[J]. Atmospheric Environment, 2001,35(12):2153-2167.
    doi: 10.1016/S1352-2310(00)00480-5
    [99]
    WONASCHÜTZ A, HITZENBERGER R, BAUER H , et al. Application of the integrating sphere method to separate the contributions of brown and black carbon in atmospheric aerosols[J]. Environmental Sicence & Technology, 2009,43(4):1141-1146.
    doi: 10.1021/es8008503 pmid: 19320171
    [100]
    MOGO S, CACHORRO V E, SORRIBAS M , et al. Measurements of continuous spectra of atmospheric absorption coefficients from UV to NIR via optical method[J]. Geophysical Research Letters, 2005,32(13):811.
    [101]
    ANDRE K, DLUGI R, SCHNATZ G . Absorption of visible radiation by atmospheric aerosol particles fog and cloud water residues[J]. Journal of Atmospheric Sciences, 1980,38:141-155.
    doi: 10.1175/1520-0469(1981)038<0141:AOVRBA>2.0.CO;2
    [102]
    MEDALIA A I, RIVIN D, SANDERS D R . A comparison of carbon black with soot[J]. Science of the Total Environment, 1983,31(1):1-22.
    doi: 10.1016/0048-9697(83)90053-0 pmid: 6197752
    [103]
    CLARKE A D, NOONE K J, HEINTZENBERG J , et al. Aerosol light absorption measurement techniques:analysis and intercomparisons[J]. Atmospheric Environment, 1987,21(6):1455-1465.
    [104]
    ARMOUR K C . Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks[J]. Nature-Climate Change, 2017,7(5):331-335.
    doi: 10.1038/nclimate3278
    [105]
    王琪, 石利霞, 周子文 . 基于双积分球的光学镜片透反射率测量系统[J]. 长春理工大学学报(自然科学版), 2017,40(2):41-45.

    WANG Q, SHI L X, ZHOU Z W . Measurement system of optical lenses transmittance and reflectance based on double-integrating-spheres[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2017,40(2):41-45.
    [106]
    CHAKRABARTY R K, PERVEZ S, CHOW J C , et al. Funeral pyres in South Asia:brown carbon aerosol emissions and climate impacts[J]. Environmental Science & Technology Letters, 2013,1(1):44-48.
    [107]
    CHAKRABARTY R K, GYAWALI M, YATAVELLI R L N , et al. Brown carbon aerosols from burning of boreal peatlands:microphysical properties,emission factors,and implications for direct radiative forcing[J]. Atmospheric Chemistry and Physics, 2016,16(5):3033-3040.
    doi: 10.5194/acp-16-3033-2016
    [108]
    CHEN L W A, MOOSMÜLLER H, ARNOTT W P , et al. Emissions from laboratory combustion of wildland fuels:emission factors and source profiles[J]. Environmental Science & Technology, 2007,41(12):4317-4325.
    doi: 10.1021/es062364i pmid: 17626431
    [109]
    SAUD T, GAUTAM R, MANDAL T K , et al. Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain(IGP),India[J]. Atmospheric Environment, 2012,61:212-220.
    doi: 10.1016/j.atmosenv.2012.07.030
    [110]
    AURELL J, GULLETT B K . Emission factors from aerial and ground measurements of field and laboratory forest burns in the Southeastern U.S.:PM2.5,black and brown carbon,VOC,and PCDD/PCDF[J]. Environmental Science & Technology, 2013,47(15):8443-8452.
    doi: 10.1021/es402101k pmid: 23895511
    [111]
    STOCKWELL C E, JAYARATHNE T, COCHRANE M A , et al. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan,Indonesia,during the 2015 El Niño[J]. Atmospheric Chemistry and Physics, 2016,16(18):11711-11732.
    doi: 10.5194/acp-16-11711-2016
    [112]
    MARTINSSON J, ERIKSSON A C, NIELSEN I E , et al. Impacts of combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol[J]. Environmental Science & Technology, 2015,49(24):14663-14671.
    doi: 10.1021/acs.est.5b03205 pmid: 26561964
    [113]
    BIRCH M E, CARY R A . Elemental carbon-based method for occupational monitoring of particulate diesel exhaust:methodology and exposure issues[J]. Analyst, 1996,121(9):1183-1190.
    doi: 10.1039/an9962101183 pmid: 8831275
    [114]
    CHOW J C, WATSON J G, PRITCHETT L C . The dri thermal/optical reflectance carbon analysis system:description,evaluation and applications in U.S. air quality studies[J]. Atmospheric Environment, 1993,27(8):1185-1201.
    [115]
    SCHNAITER M, HORVATH H, MÖHLER O , et al. UV-vis-nir spectral optical properties of soot and soot-containing aerosols[J]. Journal of Aerosol Science, 2003,34(10):1421-1444.
    doi: 10.1016/S0021-8502(03)00361-6
    [116]
    ZHI G, CHEN Y, SUN J , et al. Harmonizing aerosol carbon measurements between two conventional thermal/optical analysis methods[J]. Environmental Science & Technology, 2011,45(7):2902-2908.
    doi: 10.1021/es102803f pmid: 21366219
    [117]
    MASSABÔ D, CAPONI L, BOVE M C , et al. Brown carbon and thermal-optical analysis:a correction based on optical multi-wavelength apportionment of atmospheric aerosols[J]. Atmospheric Environment, 2016,125:119-125.
    doi: 10.1016/j.atmosenv.2015.11.011
    [118]
    CHEN L W A, CHOW J C, WANG X L , et al. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol[J]. Atmospheric Measurement Techniques, 2015,8(1):451-461.
    doi: 10.5194/amt-8-451-2015
    [119]
    LI S, ZHU M, YANG W , et al. Filter-based measurement of light absorption by brown carbon in PM2.5 in a megacity in South China[J]. Science of the Total Environment, 2018,633:1360-1369.
    doi: 10.1016/j.scitotenv.2018.03.235 pmid: 29758888
    [120]
    CHOW J C, WATSON J G, GREEN M C , et al. Separation of brown carbon from black carbon for IMPROVE and chemical speciation network PM2.5 samples[J]. Journal of the Air & Waste Management Association, 2018,68(5):494-510.
    doi: 10.1080/10962247.2018.1426653 pmid: 29341854
    [121]
    NOZIÊRE B, KALBERER M, CLAEYS M , et al. The molecular ide.pngication of organic compounds in the atmosphere:state of the art and challenges[J]. Chemical Reviews, 2015,115(10):3919-3983.
    doi: 10.1021/cr5003485 pmid: 25647604
    [122]
    STONE E A, HEDMAN C J, SHEESLEY R J , et al. Investigating the chemical nature of humic-like substances(HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry[J]. Atmospheric Environment, 2009,43(27):4205-4213.
    doi: 10.1016/j.atmosenv.2009.05.030
    [123]
    BUDISULISTIORINI S H, RIVA M, WILLIAMS M , et al. Light-absorbing brown carbon aerosol constituents from combustion of indonesian peat and biomass[J]. Environmental Science & Technology, 2017,51(8):4415-4423.
    doi: 10.1021/acs.est.7b00397 pmid: 28318234
    [124]
    BLUVSHTEIN N, LIN P, FLORES J M , et al. Broadband optical properties of biomass-burning aerosol and ide.pngication of brown carbon chromophores[J]. Journal of Geophysical Research:Atmospheres, 2017,122(10):5441-5456.
    doi: 10.1002/2016JD026230
    [125]
    LIN P, LASKIN J, NIZKORODOV S A , et al. Revealing brown carbon chromophores produced in reactions of methylglyoxal with ammonium sulfate[J]. Environmental Science & Technology, 2015,49(24):14257-14266.
    doi: 10.1021/acs.est.5b03608 pmid: 26505092
    [126]
    HEALY R M, WANG J M, JEONG C H , et al. Light absorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources[J]. Journal of Geophysical Research:Atmospheres, 2015,120(13):6619-6633.
    doi: 10.1002/2015JD023382
    [127]
    JIANG B, LIANG Y, XU C , et al. Polycyclic aromatic hydrocarbons(PAHs) in ambient aerosols from Beijing:characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization(APPI) coupled with fourier transform ion cyclotron resonance[J]. Environmental Science & Technology, 2014,48(9):4716-4723.
    doi: 10.1021/es405295p pmid: 24702199
    [128]
    LIN P, LIU J, SHILLING J E , et al. Molecular characterization of brown carbon(BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene[J]. Physical Chemistry Chemical Physics, 2015,17(36):23312-23325.
    doi: 10.1039/c5cp02563j pmid: 26173064
    [129]
    SONG J, LI M, JIANG B , et al. Molecular characterization of water-soluble humic like substances in smoke particles emitted from combustion of biomass materials and coal using ultrahigh-resolution electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 2018,52(5):2575-2585.
    doi: 10.1021/acs.est.7b06126 pmid: 29385328
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1207) PDF Downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return