YIN Mengxue, FAN Feiyue, ZHAO Long, HOU Hong. Research progress of catalytic oxidation technologies of hydrogen sulfide[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 475-481. DOI: 10.12153/j.issn.1674-991X.20190165
Citation: YIN Mengxue, FAN Feiyue, ZHAO Long, HOU Hong. Research progress of catalytic oxidation technologies of hydrogen sulfide[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 475-481. DOI: 10.12153/j.issn.1674-991X.20190165

Research progress of catalytic oxidation technologies of hydrogen sulfide

  • With the development of the economy and increasingly regard on environment protection, a series of measures were formulated and strict regulations on hydrogen sulfide (H2S) emission were established by the state. The removal of H2S has been the focus of material research and development, and catalytic oxidation is considered as a main method for H2S removal. Two kinds of catalysts including carbon-based catalysts (unsupported activated carbon, metal-supported activated carbon) and metal oxide-based catalysts (oxide-supported catalyst, metal oxide catalyst, anionic clay-supported catalyst) have been widely studied. The catalytic oxidation mechanism of H2S, preparation method for these two catalysts and H2S removal efficiency as well as the potential applications of these catalysts were discussed in detail. Carbon materials had become a popular choice as catalyst or support due to their large specific surface area, high porosity and modifiable active sites. Meanwhile, they were usually operated at relatively low temperatures and showed a good stability, and no strict stoichiometric ratios of O2/H2S was needed during H2S treatment process. However, such catalysts could only treat low concentrations of H2S and operated at lower hourly space velocity. In addition, the catalysts should be regenerated periodically after a period of use. As for metal oxide catalyst , they could treat high concentrations of H2S and showed a good catalytic performance even at higher temperatures (200-300 ℃), but the cost of the catalysts was high due to the strict O2/H2S stoichiometric ratio, high temperature and poor regenerability. Nitrogen-rich porous carbon and alkali metal-loaded alkaline millimeter mesoporous carbon spheres (MCS) exhibited excellent catalytic performance. On this basis, the future development direction of H2S catalytic oxidation was addressed.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return