Citation: | WANG Rui, XU Yirong, MENG Kexin, TANG Wei, YANG Ziyi, WANG Wen. Development of research on the conversion of carbon dioxide into fuel and high value-added products[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 639-646. doi: 10.12153/j.issn.1674-991X.20190179 |
[1] |
ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon:from CO2 to chemicals,materials,and fuels:technological use of CO2[J]. Chemical Reviews, 2014,114(3):1709-1742.
doi: 10.1021/cr4002758 pmid: 24313306 |
[2] |
关毅. 2017年大气碳水平达80万年以来最高[J]. 自然杂志, 2018,40(5):54.
|
[3] |
王丽敏, 苏连江. 自然科学基础:无机化学卷[M]. 哈尔滨: 哈尔滨地图出版社, 2004: 315.
|
[4] |
张琪, 许武韬, 刘予宇, 等. 二氧化碳电化学还原概述[J]. 自然杂志, 2017,39(4):242-250.
ZHANG Q, XU W T, LIU Y Y, et al. An overview of electrochemical reduction of carbon dioxide[J]. Chinese Journal of Nature, 2017,39(4):242-250.
|
[5] |
METTE M, MIKKEL J, FREDERIK C K. The teraton challenge:a review of fixation and transformation of carbon dioxide[J]. Energy Environment Science, 2010,3(1):43-81.
doi: 10.1039/B912904A |
[6] |
王伟建, 郑小慧, 晁会霞, 等. 二氧化碳利用新途径的研究进展评述[J]. 钦州学院学报, 2018,173(5):22-28.
WANG W J, ZHENG X H, CHAO H X, et al. Review on the research progress of new approaches to the utilization of carbon dioxide[J]. Journal of Qinzhou University, 2018,173(5):22-28.
|
[7] |
BONURA G, CORDARO M, CANNILLA C, et al. Catalytic behaviour of a bifunctional system for the one step synjournal of DME by CO2 hydrogenation[J]. Catalysts, 2013,288:51-57.
|
[8] |
GRACA I, GONZALEZ L V, BACARIZA M C, et al. CO2 hydrogenation into CH4 on NiHNaUSY zeolites[J]. Applied Catalysts, 2014,147:101-110.
|
[9] |
邵怀启, 钟顺和, 郭俊宝. CO2氧化丙烷脱氢制丙烯用Pd-Cu/V2O5-SiO2催化剂的研究[J]. 催化学报, 2004,25(2):143-148.
SHAO H Q, ZHONG S H, GUO J B. Pd-Cu/V2O5-SiO2 catalyst for propane oxidative dehydrogenation with CO2 to propylene[J]. Chinese Journal of Catalysis, 2004,25(2):143-148.
|
[10] |
HUANG W, SUN W Z, LI F. Efficient synjournal of ethanol and acetic acid from methane and carbon dioxide with a continuous,stepwise reactor[J]. American Institute of Chemical Engineers Journal, 2010,56(5):1279-1284.
|
[11] |
BARROS B S, MELO D M, LIBS S, et al. CO2 reforming of methane over La2NiO4/α-Al2O3 prepared by microwave assisted self-combustion method[J]. Applied Catalysis A:General, 2010,378(1):69-75.
doi: 10.1016/j.apcata.2010.02.001 |
[12] |
BOOGAERTS I, NOLAN S P. Carboxylation of C—H bonds using N-het-erocyclic carbene gold(Ⅰ) complexes[J]. Journal of American Chemical Society, 2010,132(26):8858-8859.
doi: 10.1021/ja103429q |
[13] |
ROSEN B A, SALEHI K A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011,334:643-644.
doi: 10.1126/science.1209786 pmid: 21960532 |
[14] |
QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014,43(2):631.
doi: 10.1039/c3cs60323g pmid: 24186433 |
[15] |
AYD N R, DO A, HULVA Z, et al. Electrochemical reduction of carbondioxide on polypyrrole coated copper electro-catalyst under ambient and high pressure in methanol[J]. Applied Catalysis B:Environmental, 2013,140/141:478.
|
[16] |
LAWRENCE Y S L, WONG K Y. Electrocatalytic reduction of carbon dioxide[J]. Chemistry, 2017,3(5):717-718.
|
[17] |
蒋永, 苏敏, 张尧, 等. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013,19(5):833-837.
doi: 10.3724/SP.J.1145.2013.00833 JIANG Y, SU M, ZHANG Y, et al. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems[J]. Chinese Journal of Applied and Environmental Biology, 2013,19(5):833-837. doi: 10.3724/SP.J.1145.2013.00833
|
[18] |
MARTINDALE B C M, COMPTON R G. Formic acid electro-synjournal from carbon dioxide in a room temperature ionic liquid[J]. Chemical Communications, 2012,48(52):6487.
pmid: 22622393 |
[19] |
郑宁来. 二氧化碳一步转化为甲酸和乙醇[J]. 合成技术及应用, 2017(4):58.
ZHENG N L. Content control of iso-phthalic acid during bottle PET chips producing[J]. Synthetic Technology & Application, 2017(4):58.
|
[20] |
WEI J, GE Q J, YAO R W, et al. Directly converting CO2 into a gasoline fuel[J].Nature Communictions, 2017(8):151.
|
[21] |
AZIZ M A A, JALIL A A, TRIWABYONO S, et a1. CO2 methanation over heterogeneous catalysts:recent progress and future prospects[J]. Green Chemistry, 2015,17:2647-2663.
doi: 10.1039/C5GC00119F |
[22] |
AGARWAL A S, ZHAI Y, HILL D, et al. The electrochemical reduction of carbon dioxide to formate/formic acid:engineering and economic feasibility[J]. ChemSusChem, 2011,4(9):1301-1310.
pmid: 21922681 |
[23] |
张现萍, 黄海燕, 靳红利. 水溶液中电化学还原CO2的研究进展[J]. 化工进展, 2015,34(12):4139-4144.
doi: 10.16085/j.issn.1000-6613.2015.12.002 ZHANG X P, HUANG H Y, JIN H L. Research progress of electrochemical reduction of CO2 in aqueous solution[J]. Chemical Progress, 2015,34(12):4139-4144. doi: 10.16085/j.issn.1000-6613.2015.12.002
|
[24] |
ZHANG S J, HUO F. Angstrom science:exploring aggregates from a new viewpoint[J]. Green Energy & Environment, 2016(1):79-82.
|
[25] |
TRAN N H, PHILIPPE S, GWENAELLE R, et al. Porous dendritic copper:an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte[J]. Chemical Science, 2017,8(1):742-747.
pmid: 28451222 |
[26] |
LINGAMPALLI S R, AYYUB M M, RAO C N R. Recent progress in the photocatalytic reduction of carbon dioxide[J]. ACS Omega, 2017,2(6):2740-2748.
doi: 10.1021/acsomega.7b00721 pmid: 31457612 |
[27] |
INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocata-lytie reduetion of carbon dioxide in aqueous suspensions of semiconductor powders[J]. Nature, 1979,277:637-638.
doi: 10.1038/277637a0 |
[28] |
LONG R, LI Y, LIU Y, et al. Isolation of Cu atoms in Pd lattice:forming highly selective sites for photocatalytic conversion of CO2 to CH4[J]. Journal of the American Chemical Society, 2017,139(12):4486-4492.
pmid: 28276680 |
[29] |
WANG D F, TONG H, OUYANG S X, et al. Semiconductor-based artificial photosynjournal for conversion of carbon dioxide into hydrocarbon fuels[J]. Science, 2014(1):62-67.
doi: 10.1007/BF02839314 pmid: 14663854 |
[30] |
NEATU S, MACIA A J A, PATRICIA C, et al. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water[J]. Journal of the American Chemical Society, 2014,136(45):15969-15976.
doi: 10.1021/ja506433k pmid: 25329687 |
[31] |
RAMSES S, ANNEMIE B. Plasma technology:a novel solution for CO2 conversation[J]. Chemical Society Reviews, 2017,46(19):5805-5863.
doi: 10.1039/c6cs00066e pmid: 28825736 |
[32] |
WANG C, SUN Z, ZHENG Y, et al. Recent progress in visible light photocatalytic conversion of carbon dioxide[J]. Journal of Materials Chemistry A, 2019,136(45):847-862.
|
[33] |
THOMPSON J F, CHEN B, KUBO M, et al. Artificial photosynjournal device development for CO2 photoelectrochemical conversion[J].MRS Advance, 2016(6):447-452.
|
[34] |
ONG W J, PUTRI L K, TAN Y C, et al. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction:a combined experimental and first-principles DFT study[J]. Nano Research, 2017,10(5):1673-1696.
doi: 10.1007/s12274-016-1391-4 |
[35] |
SHEN Q, CHEN Z, HUANG X, et al. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays[J]. Environmental Science & Technology, 2015,49:5828-5835.
doi: 10.1021/acs.est.5b00066 pmid: 25844931 |
[36] |
IRTEM E, HERNANDEZ A. A photoelectrochemical flow cell design for the efficient CO2 conversion to fuels[J]. Electrochimica Acta, 2017,240:225-230.
doi: 10.1016/j.electacta.2017.04.072 |
[37] |
JIANG M, WU H, LI Z, et al. Highly selective photoelectrochemical conversion of carbon dioxide to formic acid[J]. ACS Sustainable Chemistry & Engineering, 2018(1):82-87.
|
[38] |
LI F, ZHANG L, TONG J, et al. Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor[J]. Nano Energy, 2016,27:320-329.
doi: 10.1016/j.nanoen.2016.06.056 |
[39] |
YUAN J, WANG X, GU C, et al. Photoelectrocatalytic reduction of carbon dioxide to methanol at cuprous oxide foam cathode[J]. RSC Advance, 2017,7:24933-24939.
doi: 10.1039/C7RA03347H |
[40] |
YANG Z, WANG H, SONG W, et al. One dimensional SnO2 NRs/Fe2O3 NTs with dual synergistic effects for photoelectrocatalytic reduction CO2 into methanol[J]. Journal of Colloid and Interface Science, 2017,486:232-240.
doi: 10.1016/j.jcis.2016.09.055 pmid: 27716463 |
[41] |
KAYKOBADR K M, RUEY O H, HAMIDAH A, et al. Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation[J]. International Journal of Hydrogen Energy, 2018,39(43):18185-18193.
|
[42] |
YUAN J, XIAO B, HAO C. Photoelectrochemical reduction of carbon dioxide to ethanol at Cu2O foam cathode[J]. International Journal of Electrochemical Science, 2017,12:8288-8294.
|
[43] |
AMPELLI C, PASSALACQUA R, GENOVESE C, et al. A novel photo-electrochemical approach for the chemical recycling of carbon dioxide to fuels[J]. Chemical Engineering Transactions, 2011,25:683-688.
doi: 10.3303/CET1125114 |
[44] |
MARTIN M R, FORNERO J J, REBECCA S, et al. A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2[J]. International Microbiological Journal, 2013(7):157529.
|
[45] |
BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors atmesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015,49(20):12585-12593.
doi: 10.1021/acs.est.5b03451 pmid: 26390125 |
[46] |
DEMLER M, WEUSTER B D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii[J]. Biotechnology & Bioengineering, 2011,108(2):470-474.
doi: 10.1002/bit.22935 pmid: 20830677 |
[47] |
HU P, RISMANIYAZDI H, TEPHANOPOULOS G. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica[J]. AIChE Journal, 2013,59(9):3176-3183.
doi: 10.1002/aic.14127 |
[48] |
FERNANDEZ N A, ABUBACKAR H N, VEIGA M C, et al. Production of chemicals from C1 gases (CO,CO2) by Clostridium carboxidivorans[J]. World Journal of Microbiology and Biotechnology, 2017,33(3):43.
doi: 10.1007/s11274-016-2188-z pmid: 28160118 |
[49] |
TANNER R S, MILLER L M, YANG D C. Clostridium ljungdahlii sp.nov.,an acetogenic species in clostridial rRNA homology group Ⅰ[J]. International Journal of Systematic Bacteriology, 1993,43(2):232-236.
doi: 10.1099/00207713-43-2-232 pmid: 7684239 |
[50] |
GUNNARSSON I B, KARAKASHEV D, ANGELIDAKI I. Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z[J]. Industrial Crops & Products, 2014,62:125-129.
|
[51] |
COK B, TSIROPOULOS I, ROES A L, et al. Succinic acid production derived from carbohydrates:an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels Bioproducts & Biorefining, 2014,8(1):16-29.
|
[52] |
MUZUMDAR A V, PANGARKAR V G. Reduction of maleic acid to succinic acid on titanium cathode[J]. Organic Process Research & Development, 2004,8(4):685-688.
|
[53] |
GUNNARSSON I B, ALVARADO M M, ANGELIDAKI I. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production[J]. Environmental Science & Technology, 2014,48(20):12464.
doi: 10.1021/es504000h pmid: 25275929 |
[54] |
陆小青. 藻类生物燃料的研究进展[J]. 城市道桥与防洪, 2012(6):393-398.
|
[55] |
嵇磊, 张利雄, 姚志龙, 等. 利用藻类生物质制备生物燃料研究进展[J]. 石油学报(石油加工), 2007,23(6):1-5.
JI L, ZHANG L X, YAO Z L, et al. Review on the progress of producing bio-fuel from microalgae[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2007,23(6):1-5.
|
[56] |
王键, 杨剑, 王中原, 等. 全球碳捕集与封存发展现状及未来趋势[J]. 环境工程, 2012,30(4):118-120.
WANG J, YANG J, WANG Z Y, et al. The present status and future trends of global carbon capture and storage[J]. Environmental Engineering, 2012,30(4):118-120.
|