Volume 10 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
HU Xinyi, XU Weijian, SHI Keke, LOU Liping. Research progress of aging simulation of black carbons (BCs) in soils/sediments[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 860-870. doi: 10.12153/j.issn.1674-991X.20190221
Citation: HU Xinyi, XU Weijian, SHI Keke, LOU Liping. Research progress of aging simulation of black carbons (BCs) in soils/sediments[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 860-870. doi: 10.12153/j.issn.1674-991X.20190221

Research progress of aging simulation of black carbons (BCs) in soils/sediments

doi: 10.12153/j.issn.1674-991X.20190221
More Information
  • Corresponding author: LOU Liping E-mail: loulp@zju.edu.cn
  • Received Date: 2019-12-29
  • Publish Date: 2020-09-20
  • Black carbons (BCs) are carbon continua formed by incomplete combustion of fossil and biomass. They are widely distributed in soils and sediments and play important roles in migration and transformation of biogenic elements or pollutants. After entering the environment, the physical and chemical properties of fresh BCs will be changed by biotic or abiotic action, which is called aging. Investigating the change rule and mechanisms of aging processes of BCs are very important for predicting their environmental behaviors and ecological effects. Aging-related environmental factors such as oxygen, moisture, temperature, and pH were discussed. The domestic and foreign research methods of BCs aging were summarized, and the effects of various aging simulation methods on the physical and chemical properties of BCs were analyzed. Then, the mechanisms of BCs aging and the differences between artificial and natural aging were further discussed. The main problems in current aging research were summarized, including the lack of natural aging data, the lack of quantitative and systematic research, and the aging research methods needing to be innovated, etc.

     

  • loading
  • [1]
    GOLDBERG E D. Black carbon in the environment[M]. New York:John Wiley, 1985.
    [2]
    海婷婷, 陈颖军, 王艳, 等. 环境介质中黑碳定量方法的研究进展[J]. 环境科学与技术, 2013,36(12):153-159.

    HAI T T, CHEN Y J, WANG Y, et al. Development of quantitative methods of black carbon in different environmental matrixes[J]. Environmental Science & Technology, 2013,36(12):153-159.
    [3]
    HAMMES K, SCHMIDT M W I, SMERNIK R J, et al. Comparison of quantification methods to measure fire-derived (black∕elemental) carbon in soils and sediments using reference materials from soil,water,sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007,21(3):GB3016.
    [4]
    张旭东, 梁超, 诸葛玉平, 等. 黑碳在土壤有机碳生物地球化学循环中的作用[J]. 土壤通报, 2003,34(4):349-355.

    ZHANG X D, LIANG C, ZHUGE Y P, et al. Roles of black carbon in the biogeochemical cycles of soil organic carbon[J]. Journal of Soil Science, 2003,34(4):349-355.
    [5]
    ANTAL M J, GRONLI M. The art,science,and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003,42(8):1619-1640.
    [6]
    PARIS O, ZOLLFRANK C, ZICKLER G A. Decomposition and carbonisation of wood biopolymers-a microstructural study of softwood pyrolysis[J]. Carbon, 2005,43(1):53-66.
    [7]
    韩永明, 曹军骥. 环境中的黑碳及其全球生物地球化学循环[J]. 海洋地质与第四纪地质, 2005,25(1):125-132.

    HAN Y M, CAO J J. Black carbon in the environments and its global biogeochemical cycle[J]. Marine Geology & Quaternary Geology, 2005,25(1):125-132.
    [8]
    MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004,92(1/2/3/4):201-213.
    doi: 10.1016/j.marchem.2004.06.043
    [9]
    HEDGES J I, EGLINTON G, HATCHER P G, et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry, 2000,31(10):945-958.
    doi: 10.1016/S0146-6380(00)00096-6
    [10]
    SANTÍN C, DOERR S H, KANE E S, et al. Towards a global assessment of pyrogenic carbon from vegetation fires[J]. Global Change Biology, 2016,22(1):76-91.
    doi: 10.1111/gcb.12985 pmid: 26010729
    [11]
    SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments:analysis,distribution,implications,and current challenges[J]. Global Biogeochemical Cycles, 2000,14(3):777-793.
    doi: 10.1029/1999GB001208
    [12]
    KUHLBUSCH T A J. Black carbon and the global carbon and oxygen cycle[C]// Proceedings of the Ninth Annual V.M.Goldschmidt Conference, 1999-08-01.
    [13]
    BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015,43(1):273-298.
    doi: 10.1146/annurev-earth-060614-105038
    [14]
    韩永明. 岱海与太湖沉积物记录的最近500年以来黑碳气溶胶沉积历史和火事件[D]. 西安:中国科学院地球环境研究所, 2006.
    [15]
    胡卫国, 曹军骥, 韩永明. 青海湖流域六类土壤表土有机碳黑碳含量特征及其储量[J]. 地球环境学报, 2010,1(3):213-218.

    HU W G, CAO J J, HAN Y M. The characteristic of organic carbon and black carbon content and its storage in six types topsoil of Qinghai Lake Basin of China[J]. Journal of Earth Environment, 2010,1(3):213-218.
    [16]
    占长林, 万的军, 王平, 等. 典型工业城市土壤黑碳含量、分布特征及来源分析:以黄石市为例[J]. 土壤, 2017,49(2):350-357.

    ZHAN C L, WAN D J, WANG P, et al. Concentration,distribution and potential sources of black carbon in soils from a typical industrial city:a case study of Huangshi,China[J]. Soils, 2017,49(2):350-357.
    [17]
    占长林, 万的军, 王平, 等. 华中地区某县农田土壤黑碳分布特征及来源解析[J]. 地球环境学报, 2016,7(1):55-64.

    ZHAN C L, WAN D J, WANG P, et al. Characteristics and sources of black carbon in agricultural soils from a county in central China[J]. Journal of Earth Environment, 2016,7(1):55-64.
    [18]
    HAN Y M, WEI C, BANDOWE B A M, et al. Elemental carbon and polycyclic aromatic compounds in a 150-year sediment core from Lake Qinghai,Tibetan Plateau,China:influence of regional and local sources and transport pathways[J]. Environmental Science & Technology, 2015,49(7):4176-4183.
    doi: 10.1021/es504568m pmid: 25732352
    [19]
    HAN Y M, MARLON J R, CAO J J, et al. Holocene linkages between char,soot,biomass burning and climate from Lake Daihai,China[J]. Global Biogeochemical Cycles, 2012,26:GB4017.
    [20]
    HAN Y M, CAO J J, YAN B Z, et al. Comparison of elemental carbon in lake sediments measured by three different methods and 150-year pollution history in eastern China[J]. Environmental Science & Technology, 2011,45(12):5287-5293.
    doi: 10.1021/es103518c pmid: 21591674
    [21]
    CORNELISSEN G, GUSTAFSSON O, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon,coal,and kerogen in sediments and soils:mechanisms and consequences for distribution,bioaccumulation,and biodegradation[J]. Environmental Science & Technology, 2005,39(18):6881-6895.
    pmid: 16201609
    [22]
    LEHMANN J, da SILVA J P, STEINER C, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin:fertilizer,manure and charcoal amendments[J]. Plant and Soil, 2003,249(2):343-357.
    doi: 10.1023/A:1022833116184
    [23]
    LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems:a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006,11(2):403-427.
    doi: 10.1007/s11027-005-9006-5
    [24]
    LEHMANN J, SKJEMSTAD J, SOHI S. Australian climate-carbon cycle feedback reduced by soil black carbon[J]. Nature Geoscience, 2008,1(12):832-835.
    doi: 10.1038/ngeo358
    [25]
    CORNELISSEN G, GUSTAFSSON O. Importance of unburned coal carbon,black carbon,and amorphous organic carbon to phenanthrene sorption in sediments[J]. Environmental Science & Technology, 2005,39(3):764-769.
    doi: 10.1021/es049320z pmid: 15757337
    [26]
    LEHMANN J, CRAVO M D S, de MACEDO J L V, et al. Phosphorus management for perennial crops in central Amazonian upland soils[J]. Plant and Soil, 2001,237(2):309-319.
    doi: 10.1023/A:1013320721048
    [27]
    GLASER B, BALASHOV E, HAUMAIER L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry, 2000,31(7/8):669-678.
    doi: 10.1016/S0146-6380(00)00044-9
    [28]
    HIEMSTRA T, MIA S, DUHAUT P-B, et al. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate[J]. Environmental Science & Technology, 2013,47(16):9182-9189.
    doi: 10.1021/es400997n pmid: 23875678
    [29]
    LOU L P, LIU F X, YUE Q K, et al. Influence of humic acid on the sorption of pentachlorophenol by aged sediment amended with rice-straw biochar[J]. Applied Geochemistry, 2013,33(6):76-83.
    doi: 10.1016/j.apgeochem.2013.02.002
    [30]
    NGUYEN B T, LEHMANN J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009,40(8):846-853.
    doi: 10.1016/j.orggeochem.2009.05.004
    [31]
    MORRIS D R, GILBERT R A, REICOSKY D C, et al. Oxidation potentials of soil organic matter in histosols under different tillage methods[J]. Soil Science Society of America Journal, 2004,68(3):817-826.
    doi: 10.2136/sssaj2004.8170
    [32]
    SORENSEN L H. Rate of decomposition of organic matter in soil as influenced by repeated air drying-rewetting and repeated additions of organic material[J]. Soil Biology & Biochemistry, 1974,6(5):287-292.
    doi: 10.1016/0038-0717(74)90032-7
    [33]
    陈荣荣, 刘全全, 王俊, 等. 人工模拟降水条件下旱作农田土壤“Birch”效应冶及其响应机制[J]. 生态学报, 2016,36(2):306-317.
    doi: 10.5846/stxb201403120428

    CHEN R R, LIU Q Q, WANG J, et al. Response of soil “birch effect” to simulated rainfalls in dry croplands[J]. Acta Ecologica Sinica, 2016,36(2):306-317. doi: 10.5846/stxb201403120428
    [34]
    BIRCH H F. Mineralisation of plant nitrogen following alternate wet and dry conditions[J]. Plant and Soil, 1964,20(1):43-49.
    doi: 10.1007/BF01378096
    [35]
    吴传明. 水介质长期作用下的粉煤灰性能研究[D]. 重庆:重庆大学, 2009.
    [36]
    CHENG C H, LEHMANN J, THIES J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006,37(11):1477-1488.
    doi: 10.1016/j.orggeochem.2006.06.022
    [37]
    CHENG C H, LEHMANN J, ENGELHARD M H. Natural oxidation of black carbon in soils:changes in molecular form and surface charge along a climosequence[J]. Geochimica Et Cosmochimica Acta, 2008,72(6):1598-1610.
    doi: 10.1016/j.gca.2008.01.010
    [38]
    CHENG C H, LEHMANN J. Ageing of black carbon along a temperature gradient[J]. Chemosphere, 2009,75(8):1021-1027.
    doi: 10.1016/j.chemosphere.2009.01.045 pmid: 19223059
    [39]
    FU Q, YAN J W, LI H, et al. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles[J]. Geoderma, 2019,353:459-467.
    doi: 10.1016/j.geoderma.2019.07.027
    [40]
    KREYLING J, BEIERKUHNLEIN C, PRITSCH K, et al. Recurrent soil freeze-thaw cycles enhance grassland productivity[J]. New Phytologist, 2008,177(4):938-945.
    pmid: 18069954
    [41]
    FU Q, HOU R J, LI T X, et al. The functions of soil water and heat transfer to the environment and associated response mechanisms under different snow cover conditions[J]. Geoderma, 2018,325:9-17.
    doi: 10.1016/j.geoderma.2018.03.022
    [42]
    CHRISTOPHER S F, SHIBATA H, OZAWA M, et al. The effect of soil freezing on N cycling:comparison of two headwater subcatchments with different vegetation and snowpack conditions in the northern Hokkaido Island of Japan[J]. Biogeochemistry, 2008,88(1):15-30.
    doi: 10.1007/s10533-008-9189-4
    [43]
    YANG W Q, FENG R F, ZHANG J, et al. Carbon stock and biochemical properties in the organic layer and mineral soil under three subalpine forests in Western China[J]. Acta Ecologica Sinica, 2007,27(10):4157-4165.
    [44]
    SJURSEN H S, MICHELSEN A, HOLMSTRUP M. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil[J]. Applied Soil Ecology, 2005,28(1):79-93.
    doi: 10.1016/j.apsoil.2004.06.003
    [45]
    WATANABE T, TATENO R, IMADA S, et al. The effect of a freeze-thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest[J]. Biogeochemistry, 2019,142(3):319-338.
    doi: 10.1007/s10533-019-00537-w
    [46]
    CHENG C H, LEHMANN J, THIES J E, et al. Stability of black carbon in soils across a climatic gradient[J]. Journal of Geophysical Research-Biogeosciences, 2008,113:G02027.
    [47]
    NGUYEN B T, LEHMANN J, HOCKADAY W C, et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science & Technology, 2010,44(9):3324-3331.
    pmid: 20384335
    [48]
    FAN Q Y, CUI L Q, QUAN G X, et al. Effects of wet oxidation process on biochar surface in acid and alkaline soil environments[J]. Materials, 2018,11(12):2362.
    doi: 10.3390/ma11122362
    [49]
    GUO Y, TANG W, WU J G, et al. Mechanism of Cu(Ⅱ) adsorption inhibition on biochar by its aging process[J]. Journal of Environmental Sciences, 2014,26(10):2123-2130.
    doi: 10.1016/j.jes.2014.08.012
    [50]
    CHANG R H, SOHI S P, JING F Q, et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching,acidification and oxidation[J]. Environmental Pollution, 2019,254:113123.
    doi: 10.1016/j.envpol.2019.113123 pmid: 31487672
    [51]
    曹守坤. 粉煤灰改性及处理含磷废水研究[D]. 厦门:华侨大学, 2012.
    [52]
    POTTER M C. Bacteria as agents in the oxidation of amorphous carbon[J]. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character, 1908,80:239-259.
    doi: 10.1098/rspb.1908.0023
    [53]
    STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology & Biochemistry, 2009,41(6):1301-1310.
    doi: 10.1016/j.soilbio.2009.03.016
    [54]
    PIETIKAINEN J, KIIKKILA O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000,89(2):231-242.
    doi: 10.1034/j.1600-0706.2000.890203.x
    [55]
    QUAN G X, FAN Q Y, ZIMMERMAN A R, et al. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products[J]. Journal of Hazardous Materials, 2019,382:121071.
    doi: 10.1016/j.jhazmat.2019.121071 pmid: 31472466
    [56]
    ZIMMERMAN A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science & Technology, 2010,44(4):1295-1301.
    doi: 10.1021/es903140c pmid: 20085259
    [57]
    HAMER U, MARSCHNER B, BRODOWSKI S, et al. Interactive priming of black carbon and glucose mineralisation[J]. Organic Geochemistry, 2004,35(7):823-830.
    doi: 10.1016/j.orggeochem.2004.03.003
    [58]
    CLOUGH A, SKJEMSTAD J O. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate[J]. Australian Journal of Soil Research, 2000,38(5):1005-1016.
    [59]
    NGUYEN B T, LEHMANN J, KINYANGI J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009,92(1/2):163-176.
    doi: 10.1007/s10533-008-9248-x
    [60]
    YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology, 2016,50(5):2264-2271.
    doi: 10.1021/acs.est.5b03656 pmid: 26828311
    [61]
    XIAO C, STEVENS R, FAUCI M, et al. Soil microbial activity,aggregation and nutrient responses to straw pulping liquor in corn cropping[J]. Biology and Fertility of Soils, 2007,43(6):709-719.
    doi: 10.1007/s00374-006-0153-y
    [62]
    程广焕. 黑碳对沉积物中壬基酚吸附解吸和微生物降解的影响[D]. 杭州:浙江大学, 2015.
    [63]
    PIGNATELLO J J, KWON S, LU Y. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):attenuation of surface activity by humic and fulvic acids[J]. Environmental Science & Technology, 2006,40(24):7757-7763.
    doi: 10.1021/es061307m pmid: 17256524
    [64]
    QIU Y, XIAO X, CHENG H, et al. Influence of environmental factors on pesticide adsorption by black carbon:pH and model dissolved organic matter[J]. Environmental Science & Technology, 2009,43(13):4973-4978.
    pmid: 19673294
    [65]
    KELLY C A, CHYNOWETH D P. The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis[J]. Limnology and Oceanography, 1981,26(5):891-897.
    doi: 10.4319/lo.1981.26.5.0891
    [66]
    HARGRAVE B T, PHILLIPS G A, SCIENCE S. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment[J]. Estuarine Coastal, 1981,12(6):725-737.
    [67]
    THERKILDSEN M S, LOMSTEIN B A. Seasonal variation in net benthic C-mineralization in a shallow estuary[J]. Fems Microbiology Ecology, 1993,12(2):131-142.
    doi: 10.1111/fem.1993.12.issue-2
    [68]
    MIDDELBURG J J, KLAVER G, NIEUWENHUIZE J, et al. Organic matter mineralization in intertidal sediments along an estuarine gradient[J]. Marine Ecology Progress Series, 1996,132(1/2/3):157-168.
    doi: 10.3354/meps132157
    [69]
    HALE S E, HANLEY K, LEHMANN J, et al. Effects of chemical,biological,and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 2011,46(4):2479-2480.
    doi: 10.1021/es3001097
    [70]
    TAN L S, MA Z H, YANG K Q, et al. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars[J]. Science of the Total Environment, 2019,699:134223.
    doi: 10.1016/j.scitotenv.2019.134223 pmid: 31522055
    [71]
    MIA S, DIJKSTRA F A, SINGH B. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium[J]. Environmental Science & Technology, 2017,51(15):8359-8367.
    doi: 10.1021/acs.est.7b00647 pmid: 28632984
    [72]
    LIU Z Y, DEMISIE W, ZHANG M K. Simulated degradation of biochar and its potential environmental implications[J]. Environmental Pollution, 2013,179:146-152.
    doi: 10.1016/j.envpol.2013.04.030
    [73]
    QIAO Y H, CROWLEY D, WANG K, et al. Effects of biochar and arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil[J]. Environmental Pollution, 2015,206:636-643.
    doi: 10.1016/j.envpol.2015.08.029 pmid: 26319508
    [74]
    DONG X L, LI G T, LIN Q M, et al. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. Catena, 2017,159:136-143.
    doi: 10.1016/j.catena.2017.08.008
    [75]
    MIA S, DIJKSTRA F A, SINGH B. Long-term aging of biochar:a molecular understanding with agricultural and environmental implications[M]. Advances in Agronomy, 2017: 1-51.
    [76]
    MARTIN S M, KOOKANA R S, VAN ZWIETEN L, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil[J]. Journal of Hazardous Materials, 2012,231:70-78.
    doi: 10.1016/j.jhazmat.2012.06.040
    [77]
    KAAL J, MARTINEZ CORTIZAS A, NIEROP K G J. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon[J]. Journal of Analytical and Applied Pyrolysis, 2009,85(1/2):408-416.
    doi: 10.1016/j.jaap.2008.11.007
    [78]
    QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars[J]. Carbon, 2016,96:759-767.
    doi: 10.1016/j.carbon.2015.09.106
    [79]
    SMITH C R, SLEIGHTER R L, HATCHER P G, et al. Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 2013,47(23):13294-13302.
    doi: 10.1021/es4034777 pmid: 24180747
    [80]
    MOTTA A C V, REEVES D W, TOUCHTON J T. Tillage intensity effects on chemical indicators of soil quality in two coastal plain soils[J]. Communications in Soil Science and Plant Analysis, 2002,33(5/6):913-932.
    doi: 10.1081/CSS-120003074
    [81]
    GHAFFAR A, GHOSH S, LI F, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates[J]. Environmental Pollution, 2015,206:502-509.
    doi: 10.1016/j.envpol.2015.08.001 pmid: 26281762
    [82]
    黄文海. 典型环境微界面吸附有机污染物的构效关系及作用机理[D]. 杭州:浙江大学, 2010.
    [83]
    YANG J, LI H, ZHANG D, et al. Limited role of biochars in nitrogen fixation through nitrate adsorption[J]. Science of the Total Environment, 2017,592:758-765.
    doi: 10.1016/j.scitotenv.2016.10.182 pmid: 28341466
    [84]
    ASCOUGH P L, BIRD M I, FRANCIS S M, et al. Variability in oxidative degradation of charcoal:influence of production conditions and environmental exposure[J]. Geochimica Et Cosmochimica Acta, 2011,75(9):2361-2378.
    doi: 10.1016/j.gca.2011.02.002
    [85]
    KAWAMOTO K, ISHIMARU K, IMAMURA Y. Reactivity of wood charcoal with ozone[J]. Journal of Wood Science, 2005,51(1):66-72.
    doi: 10.1007/s10086-003-0616-9
    [86]
    MORENO-CASTILLA C, LOPEZ-RAMON M V, CARRASCO-MARIN F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000,38(14):1995-2001.
    doi: 10.1016/S0008-6223(00)00048-8
    [87]
    MORENO-CASTILLA C, FERROGARCIA M A, JOLY J P, et al. Activated carbon surface modifications by nitric acid,hydrogen peroxide,and ammonium peroxydisulfate treatments[J]. Langmuir, 1995,11(11):4386-4392.
    doi: 10.1021/la00011a035
    [88]
    SANFORD J R, LARSON R A, RUNGE T. Nitrate sorption to biochar following chemical oxidation[J]. Science of the Total Environment, 2019,669:938-947.
    pmid: 30970460
    [89]
    YAO F X, ARBESTAIN M C, VIRGEL S, et al. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor[J]. Chemosphere, 2010,80(7):724-732.
    pmid: 20542316
    [90]
    MUKHERJEE A, ZIMMERMAN A R, HAMDAN R, et al. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging[J]. Solid Earth, 2014,5(2):693-704.
    doi: 10.5194/se-5-693-2014
    [91]
    KASIN I, OHLSON M. An experimental study of charcoal degradation in a boreal forest[J]. Soil Biology & Biochemistry, 2013,65:39-49.
    doi: 10.1016/j.soilbio.2013.05.005
    [92]
    FAN Q Y, SUN J X, CHU L, et al. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar[J]. Chemosphere, 2018,207:33-40.
    doi: 10.1016/j.chemosphere.2018.05.044 pmid: 29772422
    [93]
    YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose,cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12/13):1781-1788.
    doi: 10.1016/j.fuel.2006.12.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(460) PDF Downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return