Citation: | HU Xinyi, XU Weijian, SHI Keke, LOU Liping. Research progress of aging simulation of black carbons (BCs) in soils/sediments[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 860-870. doi: 10.12153/j.issn.1674-991X.20190221 |
[1] |
GOLDBERG E D. Black carbon in the environment[M]. New York:John Wiley, 1985.
|
[2] |
海婷婷, 陈颖军, 王艳, 等. 环境介质中黑碳定量方法的研究进展[J]. 环境科学与技术, 2013,36(12):153-159.
HAI T T, CHEN Y J, WANG Y, et al. Development of quantitative methods of black carbon in different environmental matrixes[J]. Environmental Science & Technology, 2013,36(12):153-159.
|
[3] |
HAMMES K, SCHMIDT M W I, SMERNIK R J, et al. Comparison of quantification methods to measure fire-derived (black∕elemental) carbon in soils and sediments using reference materials from soil,water,sediment and the atmosphere[J]. Global Biogeochemical Cycles, 2007,21(3):GB3016.
|
[4] |
张旭东, 梁超, 诸葛玉平, 等. 黑碳在土壤有机碳生物地球化学循环中的作用[J]. 土壤通报, 2003,34(4):349-355.
ZHANG X D, LIANG C, ZHUGE Y P, et al. Roles of black carbon in the biogeochemical cycles of soil organic carbon[J]. Journal of Soil Science, 2003,34(4):349-355.
|
[5] |
ANTAL M J, GRONLI M. The art,science,and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003,42(8):1619-1640.
|
[6] |
PARIS O, ZOLLFRANK C, ZICKLER G A. Decomposition and carbonisation of wood biopolymers-a microstructural study of softwood pyrolysis[J]. Carbon, 2005,43(1):53-66.
|
[7] |
韩永明, 曹军骥. 环境中的黑碳及其全球生物地球化学循环[J]. 海洋地质与第四纪地质, 2005,25(1):125-132.
HAN Y M, CAO J J. Black carbon in the environments and its global biogeochemical cycle[J]. Marine Geology & Quaternary Geology, 2005,25(1):125-132.
|
[8] |
MASIELLO C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004,92(1/2/3/4):201-213.
doi: 10.1016/j.marchem.2004.06.043 |
[9] |
HEDGES J I, EGLINTON G, HATCHER P G, et al. The molecularly-uncharacterized component of nonliving organic matter in natural environments[J]. Organic Geochemistry, 2000,31(10):945-958.
doi: 10.1016/S0146-6380(00)00096-6 |
[10] |
SANTÍN C, DOERR S H, KANE E S, et al. Towards a global assessment of pyrogenic carbon from vegetation fires[J]. Global Change Biology, 2016,22(1):76-91.
doi: 10.1111/gcb.12985 pmid: 26010729 |
[11] |
SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments:analysis,distribution,implications,and current challenges[J]. Global Biogeochemical Cycles, 2000,14(3):777-793.
doi: 10.1029/1999GB001208 |
[12] |
KUHLBUSCH T A J. Black carbon and the global carbon and oxygen cycle[C]// Proceedings of the Ninth Annual V.M.Goldschmidt Conference, 1999-08-01.
|
[13] |
BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015,43(1):273-298.
doi: 10.1146/annurev-earth-060614-105038 |
[14] |
韩永明. 岱海与太湖沉积物记录的最近500年以来黑碳气溶胶沉积历史和火事件[D]. 西安:中国科学院地球环境研究所, 2006.
|
[15] |
胡卫国, 曹军骥, 韩永明. 青海湖流域六类土壤表土有机碳黑碳含量特征及其储量[J]. 地球环境学报, 2010,1(3):213-218.
HU W G, CAO J J, HAN Y M. The characteristic of organic carbon and black carbon content and its storage in six types topsoil of Qinghai Lake Basin of China[J]. Journal of Earth Environment, 2010,1(3):213-218.
|
[16] |
占长林, 万的军, 王平, 等. 典型工业城市土壤黑碳含量、分布特征及来源分析:以黄石市为例[J]. 土壤, 2017,49(2):350-357.
ZHAN C L, WAN D J, WANG P, et al. Concentration,distribution and potential sources of black carbon in soils from a typical industrial city:a case study of Huangshi,China[J]. Soils, 2017,49(2):350-357.
|
[17] |
占长林, 万的军, 王平, 等. 华中地区某县农田土壤黑碳分布特征及来源解析[J]. 地球环境学报, 2016,7(1):55-64.
ZHAN C L, WAN D J, WANG P, et al. Characteristics and sources of black carbon in agricultural soils from a county in central China[J]. Journal of Earth Environment, 2016,7(1):55-64.
|
[18] |
HAN Y M, WEI C, BANDOWE B A M, et al. Elemental carbon and polycyclic aromatic compounds in a 150-year sediment core from Lake Qinghai,Tibetan Plateau,China:influence of regional and local sources and transport pathways[J]. Environmental Science & Technology, 2015,49(7):4176-4183.
doi: 10.1021/es504568m pmid: 25732352 |
[19] |
HAN Y M, MARLON J R, CAO J J, et al. Holocene linkages between char,soot,biomass burning and climate from Lake Daihai,China[J]. Global Biogeochemical Cycles, 2012,26:GB4017.
|
[20] |
HAN Y M, CAO J J, YAN B Z, et al. Comparison of elemental carbon in lake sediments measured by three different methods and 150-year pollution history in eastern China[J]. Environmental Science & Technology, 2011,45(12):5287-5293.
doi: 10.1021/es103518c pmid: 21591674 |
[21] |
CORNELISSEN G, GUSTAFSSON O, BUCHELI T D, et al. Extensive sorption of organic compounds to black carbon,coal,and kerogen in sediments and soils:mechanisms and consequences for distribution,bioaccumulation,and biodegradation[J]. Environmental Science & Technology, 2005,39(18):6881-6895.
pmid: 16201609 |
[22] |
LEHMANN J, da SILVA J P, STEINER C, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon basin:fertilizer,manure and charcoal amendments[J]. Plant and Soil, 2003,249(2):343-357.
doi: 10.1023/A:1022833116184 |
[23] |
LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems:a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006,11(2):403-427.
doi: 10.1007/s11027-005-9006-5 |
[24] |
LEHMANN J, SKJEMSTAD J, SOHI S. Australian climate-carbon cycle feedback reduced by soil black carbon[J]. Nature Geoscience, 2008,1(12):832-835.
doi: 10.1038/ngeo358 |
[25] |
CORNELISSEN G, GUSTAFSSON O. Importance of unburned coal carbon,black carbon,and amorphous organic carbon to phenanthrene sorption in sediments[J]. Environmental Science & Technology, 2005,39(3):764-769.
doi: 10.1021/es049320z pmid: 15757337 |
[26] |
LEHMANN J, CRAVO M D S, de MACEDO J L V, et al. Phosphorus management for perennial crops in central Amazonian upland soils[J]. Plant and Soil, 2001,237(2):309-319.
doi: 10.1023/A:1013320721048 |
[27] |
GLASER B, BALASHOV E, HAUMAIER L, et al. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region[J]. Organic Geochemistry, 2000,31(7/8):669-678.
doi: 10.1016/S0146-6380(00)00044-9 |
[28] |
HIEMSTRA T, MIA S, DUHAUT P-B, et al. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate[J]. Environmental Science & Technology, 2013,47(16):9182-9189.
doi: 10.1021/es400997n pmid: 23875678 |
[29] |
LOU L P, LIU F X, YUE Q K, et al. Influence of humic acid on the sorption of pentachlorophenol by aged sediment amended with rice-straw biochar[J]. Applied Geochemistry, 2013,33(6):76-83.
doi: 10.1016/j.apgeochem.2013.02.002 |
[30] |
NGUYEN B T, LEHMANN J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009,40(8):846-853.
doi: 10.1016/j.orggeochem.2009.05.004 |
[31] |
MORRIS D R, GILBERT R A, REICOSKY D C, et al. Oxidation potentials of soil organic matter in histosols under different tillage methods[J]. Soil Science Society of America Journal, 2004,68(3):817-826.
doi: 10.2136/sssaj2004.8170 |
[32] |
SORENSEN L H. Rate of decomposition of organic matter in soil as influenced by repeated air drying-rewetting and repeated additions of organic material[J]. Soil Biology & Biochemistry, 1974,6(5):287-292.
doi: 10.1016/0038-0717(74)90032-7 |
[33] |
陈荣荣, 刘全全, 王俊, 等. 人工模拟降水条件下旱作农田土壤“Birch”效应冶及其响应机制[J]. 生态学报, 2016,36(2):306-317.
doi: 10.5846/stxb201403120428 CHEN R R, LIU Q Q, WANG J, et al. Response of soil “birch effect” to simulated rainfalls in dry croplands[J]. Acta Ecologica Sinica, 2016,36(2):306-317. doi: 10.5846/stxb201403120428
|
[34] |
BIRCH H F. Mineralisation of plant nitrogen following alternate wet and dry conditions[J]. Plant and Soil, 1964,20(1):43-49.
doi: 10.1007/BF01378096 |
[35] |
吴传明. 水介质长期作用下的粉煤灰性能研究[D]. 重庆:重庆大学, 2009.
|
[36] |
CHENG C H, LEHMANN J, THIES J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006,37(11):1477-1488.
doi: 10.1016/j.orggeochem.2006.06.022 |
[37] |
CHENG C H, LEHMANN J, ENGELHARD M H. Natural oxidation of black carbon in soils:changes in molecular form and surface charge along a climosequence[J]. Geochimica Et Cosmochimica Acta, 2008,72(6):1598-1610.
doi: 10.1016/j.gca.2008.01.010 |
[38] |
CHENG C H, LEHMANN J. Ageing of black carbon along a temperature gradient[J]. Chemosphere, 2009,75(8):1021-1027.
doi: 10.1016/j.chemosphere.2009.01.045 pmid: 19223059 |
[39] |
FU Q, YAN J W, LI H, et al. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles[J]. Geoderma, 2019,353:459-467.
doi: 10.1016/j.geoderma.2019.07.027 |
[40] |
KREYLING J, BEIERKUHNLEIN C, PRITSCH K, et al. Recurrent soil freeze-thaw cycles enhance grassland productivity[J]. New Phytologist, 2008,177(4):938-945.
pmid: 18069954 |
[41] |
FU Q, HOU R J, LI T X, et al. The functions of soil water and heat transfer to the environment and associated response mechanisms under different snow cover conditions[J]. Geoderma, 2018,325:9-17.
doi: 10.1016/j.geoderma.2018.03.022 |
[42] |
CHRISTOPHER S F, SHIBATA H, OZAWA M, et al. The effect of soil freezing on N cycling:comparison of two headwater subcatchments with different vegetation and snowpack conditions in the northern Hokkaido Island of Japan[J]. Biogeochemistry, 2008,88(1):15-30.
doi: 10.1007/s10533-008-9189-4 |
[43] |
YANG W Q, FENG R F, ZHANG J, et al. Carbon stock and biochemical properties in the organic layer and mineral soil under three subalpine forests in Western China[J]. Acta Ecologica Sinica, 2007,27(10):4157-4165.
|
[44] |
SJURSEN H S, MICHELSEN A, HOLMSTRUP M. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil[J]. Applied Soil Ecology, 2005,28(1):79-93.
doi: 10.1016/j.apsoil.2004.06.003 |
[45] |
WATANABE T, TATENO R, IMADA S, et al. The effect of a freeze-thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest[J]. Biogeochemistry, 2019,142(3):319-338.
doi: 10.1007/s10533-019-00537-w |
[46] |
CHENG C H, LEHMANN J, THIES J E, et al. Stability of black carbon in soils across a climatic gradient[J]. Journal of Geophysical Research-Biogeosciences, 2008,113:G02027.
|
[47] |
NGUYEN B T, LEHMANN J, HOCKADAY W C, et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science & Technology, 2010,44(9):3324-3331.
pmid: 20384335 |
[48] |
FAN Q Y, CUI L Q, QUAN G X, et al. Effects of wet oxidation process on biochar surface in acid and alkaline soil environments[J]. Materials, 2018,11(12):2362.
doi: 10.3390/ma11122362 |
[49] |
GUO Y, TANG W, WU J G, et al. Mechanism of Cu(Ⅱ) adsorption inhibition on biochar by its aging process[J]. Journal of Environmental Sciences, 2014,26(10):2123-2130.
doi: 10.1016/j.jes.2014.08.012 |
[50] |
CHANG R H, SOHI S P, JING F Q, et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching,acidification and oxidation[J]. Environmental Pollution, 2019,254:113123.
doi: 10.1016/j.envpol.2019.113123 pmid: 31487672 |
[51] |
曹守坤. 粉煤灰改性及处理含磷废水研究[D]. 厦门:华侨大学, 2012.
|
[52] |
POTTER M C. Bacteria as agents in the oxidation of amorphous carbon[J]. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character, 1908,80:239-259.
doi: 10.1098/rspb.1908.0023 |
[53] |
STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology & Biochemistry, 2009,41(6):1301-1310.
doi: 10.1016/j.soilbio.2009.03.016 |
[54] |
PIETIKAINEN J, KIIKKILA O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000,89(2):231-242.
doi: 10.1034/j.1600-0706.2000.890203.x |
[55] |
QUAN G X, FAN Q Y, ZIMMERMAN A R, et al. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products[J]. Journal of Hazardous Materials, 2019,382:121071.
doi: 10.1016/j.jhazmat.2019.121071 pmid: 31472466 |
[56] |
ZIMMERMAN A R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)[J]. Environmental Science & Technology, 2010,44(4):1295-1301.
doi: 10.1021/es903140c pmid: 20085259 |
[57] |
HAMER U, MARSCHNER B, BRODOWSKI S, et al. Interactive priming of black carbon and glucose mineralisation[J]. Organic Geochemistry, 2004,35(7):823-830.
doi: 10.1016/j.orggeochem.2004.03.003 |
[58] |
CLOUGH A, SKJEMSTAD J O. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate[J]. Australian Journal of Soil Research, 2000,38(5):1005-1016.
|
[59] |
NGUYEN B T, LEHMANN J, KINYANGI J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009,92(1/2):163-176.
doi: 10.1007/s10533-008-9248-x |
[60] |
YANG F, ZHAO L, GAO B, et al. The interfacial behavior between biochar and soil minerals and its effect on biochar stability[J]. Environmental Science & Technology, 2016,50(5):2264-2271.
doi: 10.1021/acs.est.5b03656 pmid: 26828311 |
[61] |
XIAO C, STEVENS R, FAUCI M, et al. Soil microbial activity,aggregation and nutrient responses to straw pulping liquor in corn cropping[J]. Biology and Fertility of Soils, 2007,43(6):709-719.
doi: 10.1007/s00374-006-0153-y |
[62] |
程广焕. 黑碳对沉积物中壬基酚吸附解吸和微生物降解的影响[D]. 杭州:浙江大学, 2015.
|
[63] |
PIGNATELLO J J, KWON S, LU Y. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):attenuation of surface activity by humic and fulvic acids[J]. Environmental Science & Technology, 2006,40(24):7757-7763.
doi: 10.1021/es061307m pmid: 17256524 |
[64] |
QIU Y, XIAO X, CHENG H, et al. Influence of environmental factors on pesticide adsorption by black carbon:pH and model dissolved organic matter[J]. Environmental Science & Technology, 2009,43(13):4973-4978.
pmid: 19673294 |
[65] |
KELLY C A, CHYNOWETH D P. The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis[J]. Limnology and Oceanography, 1981,26(5):891-897.
doi: 10.4319/lo.1981.26.5.0891 |
[66] |
HARGRAVE B T, PHILLIPS G A, SCIENCE S. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediment[J]. Estuarine Coastal, 1981,12(6):725-737.
|
[67] |
THERKILDSEN M S, LOMSTEIN B A. Seasonal variation in net benthic C-mineralization in a shallow estuary[J]. Fems Microbiology Ecology, 1993,12(2):131-142.
doi: 10.1111/fem.1993.12.issue-2 |
[68] |
MIDDELBURG J J, KLAVER G, NIEUWENHUIZE J, et al. Organic matter mineralization in intertidal sediments along an estuarine gradient[J]. Marine Ecology Progress Series, 1996,132(1/2/3):157-168.
doi: 10.3354/meps132157 |
[69] |
HALE S E, HANLEY K, LEHMANN J, et al. Effects of chemical,biological,and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 2011,46(4):2479-2480.
doi: 10.1021/es3001097 |
[70] |
TAN L S, MA Z H, YANG K Q, et al. Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars[J]. Science of the Total Environment, 2019,699:134223.
doi: 10.1016/j.scitotenv.2019.134223 pmid: 31522055 |
[71] |
MIA S, DIJKSTRA F A, SINGH B. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium[J]. Environmental Science & Technology, 2017,51(15):8359-8367.
doi: 10.1021/acs.est.7b00647 pmid: 28632984 |
[72] |
LIU Z Y, DEMISIE W, ZHANG M K. Simulated degradation of biochar and its potential environmental implications[J]. Environmental Pollution, 2013,179:146-152.
doi: 10.1016/j.envpol.2013.04.030 |
[73] |
QIAO Y H, CROWLEY D, WANG K, et al. Effects of biochar and arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil[J]. Environmental Pollution, 2015,206:636-643.
doi: 10.1016/j.envpol.2015.08.029 pmid: 26319508 |
[74] |
DONG X L, LI G T, LIN Q M, et al. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. Catena, 2017,159:136-143.
doi: 10.1016/j.catena.2017.08.008 |
[75] |
MIA S, DIJKSTRA F A, SINGH B. Long-term aging of biochar:a molecular understanding with agricultural and environmental implications[M]. Advances in Agronomy, 2017: 1-51.
|
[76] |
MARTIN S M, KOOKANA R S, VAN ZWIETEN L, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil[J]. Journal of Hazardous Materials, 2012,231:70-78.
doi: 10.1016/j.jhazmat.2012.06.040 |
[77] |
KAAL J, MARTINEZ CORTIZAS A, NIEROP K G J. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon[J]. Journal of Analytical and Applied Pyrolysis, 2009,85(1/2):408-416.
doi: 10.1016/j.jaap.2008.11.007 |
[78] |
QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars[J]. Carbon, 2016,96:759-767.
doi: 10.1016/j.carbon.2015.09.106 |
[79] |
SMITH C R, SLEIGHTER R L, HATCHER P G, et al. Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Environmental Science & Technology, 2013,47(23):13294-13302.
doi: 10.1021/es4034777 pmid: 24180747 |
[80] |
MOTTA A C V, REEVES D W, TOUCHTON J T. Tillage intensity effects on chemical indicators of soil quality in two coastal plain soils[J]. Communications in Soil Science and Plant Analysis, 2002,33(5/6):913-932.
doi: 10.1081/CSS-120003074 |
[81] |
GHAFFAR A, GHOSH S, LI F, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates[J]. Environmental Pollution, 2015,206:502-509.
doi: 10.1016/j.envpol.2015.08.001 pmid: 26281762 |
[82] |
黄文海. 典型环境微界面吸附有机污染物的构效关系及作用机理[D]. 杭州:浙江大学, 2010.
|
[83] |
YANG J, LI H, ZHANG D, et al. Limited role of biochars in nitrogen fixation through nitrate adsorption[J]. Science of the Total Environment, 2017,592:758-765.
doi: 10.1016/j.scitotenv.2016.10.182 pmid: 28341466 |
[84] |
ASCOUGH P L, BIRD M I, FRANCIS S M, et al. Variability in oxidative degradation of charcoal:influence of production conditions and environmental exposure[J]. Geochimica Et Cosmochimica Acta, 2011,75(9):2361-2378.
doi: 10.1016/j.gca.2011.02.002 |
[85] |
KAWAMOTO K, ISHIMARU K, IMAMURA Y. Reactivity of wood charcoal with ozone[J]. Journal of Wood Science, 2005,51(1):66-72.
doi: 10.1007/s10086-003-0616-9 |
[86] |
MORENO-CASTILLA C, LOPEZ-RAMON M V, CARRASCO-MARIN F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000,38(14):1995-2001.
doi: 10.1016/S0008-6223(00)00048-8 |
[87] |
MORENO-CASTILLA C, FERROGARCIA M A, JOLY J P, et al. Activated carbon surface modifications by nitric acid,hydrogen peroxide,and ammonium peroxydisulfate treatments[J]. Langmuir, 1995,11(11):4386-4392.
doi: 10.1021/la00011a035 |
[88] |
SANFORD J R, LARSON R A, RUNGE T. Nitrate sorption to biochar following chemical oxidation[J]. Science of the Total Environment, 2019,669:938-947.
pmid: 30970460 |
[89] |
YAO F X, ARBESTAIN M C, VIRGEL S, et al. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor[J]. Chemosphere, 2010,80(7):724-732.
pmid: 20542316 |
[90] |
MUKHERJEE A, ZIMMERMAN A R, HAMDAN R, et al. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging[J]. Solid Earth, 2014,5(2):693-704.
doi: 10.5194/se-5-693-2014 |
[91] |
KASIN I, OHLSON M. An experimental study of charcoal degradation in a boreal forest[J]. Soil Biology & Biochemistry, 2013,65:39-49.
doi: 10.1016/j.soilbio.2013.05.005 |
[92] |
FAN Q Y, SUN J X, CHU L, et al. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar[J]. Chemosphere, 2018,207:33-40.
doi: 10.1016/j.chemosphere.2018.05.044 pmid: 29772422 |
[93] |
YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose,cellulose and lignin pyrolysis[J]. Fuel, 2007,86(12/13):1781-1788.
doi: 10.1016/j.fuel.2006.12.013 |