Volume 10 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
XU Min, LI Jiangbo, ZHOU Yudu, ZHANG Shaohui. Distribution of fog and haze in Langfang and difference of wind field when coexisting with heavy polluted weather[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 814-822. doi: 10.12153/j.issn.1674-991X.20200001
Citation: XU Min, LI Jiangbo, ZHOU Yudu, ZHANG Shaohui. Distribution of fog and haze in Langfang and difference of wind field when coexisting with heavy polluted weather[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 814-822. doi: 10.12153/j.issn.1674-991X.20200001

Distribution of fog and haze in Langfang and difference of wind field when coexisting with heavy polluted weather

doi: 10.12153/j.issn.1674-991X.20200001
  • Received Date: 2020-01-02
  • Publish Date: 2020-09-20
  • By using National Centers for Environmental Prediction (NCEP) reanalysis data(1°×1°),wind profiler radar data, meteorological observation data, and environmental monitoring data, fog and haze distribution of Langfang from 2015 to 2018 were analyzed, and vertical wind field structure in fog and haze of air quality index (AQI) reaching heavy pollution was studied in depth. The results showed that the average annual number of haze days (47 d) in Langfang was more than that of fog days (31 d), and the spatial distribution was different to some extent. The monthly difference of haze was more significant than that of fog. Regional fog could occur all year round, reaching the peak in October, while haze was concentrated in autumn and winter, and the maximum number of haze days was in January. When AQI was greater than 200, the pollution level of fog was heavier than that of haze, with AQI daily average being 43 higher, the average surface wind speed 0.5 m/s lower, and the relative humidity about twenty-five percent higher. In fog, the surface wind was mainly calm or southeast wind, while in haze, it was mainly east-southeast wind. In the case of heavy pollution with fog, the low altitude was the west-southwest wind, while the heavy pollution with haze was mainly the northeast wind. In the case of fog or haze, there was a relatively small wind velocity layer in the lower space of 1 500 m (about 850 hPa).When the wind speed increased to 6-10 m/s below 3 000 m, it had a favorable effect on the diffusion of air pollutants. The greater the wind speed of the northwest wind, the lower the height, the more obvious the diffusion effect.

     

  • loading
  • [1]
    周文君, 平海波, 刘端阳, 等. 江苏盐城地区一次持续雾-霾天气过程的综合分析[J]. 气象, 2016,42(7):838-846.

    ZHOU W J, PING H B, LIU D Y, et al. Analysis of the sustained fog-haze event in Yancheng[J]. Meteorological Monthly, 2016,42(7):838-846.
    [2]
    陈镭, 马井会, 甄新蓉, 等. 上海地区空气污染变化特征及其气象影响因素[J]. 气象与环境学报, 2017,33(3):59-67.

    CHEN L, MA J H, ZHEN X R, et al. Variation characteristics and meteorological influencing factors of air pollution in Shanghai[J]. Journal of Meteorology and Environment, 2017,33(3):59-67.
    [3]
    王珊, 修天阳, 孙扬, 等. 1960—2012年西安地区雾霾日数与气象因素变化规律分析[J]. 环境科学学报, 2014,34(1):19-26.

    WANG S, XIU T Y, SUN Y, et al. The changes of mist and haze days and meteorological element during 1960-2012 in Xian[J]. Acta Scientiae Circumstantiae, 2014,34(1):19-26.
    [4]
    王开燕, 朱建军, 张振清, 等. 风廓线雷达资料在灰霾预报中的应用研究[J]. 环境科学与技术, 2011,35(1):164-167.

    WANG K Y, ZHU J J, ZHANG Z Q, et al. Haze forecast using wind-profiling radar data[J]. Environmental Science & Technology, 2011,35(1):164-167.
    [5]
    STEPHEN H, ROBERT N S. High-inversion fog episodes in Central California[J]. Journal of Applied Meteorology, 1981,20(8):890-899.
    [6]
    WILLIAM C M, DEREK E D. Estimates of aerosol species scattering characteristics as a function of relative humidity[J]. Atmospheric Environment, 2001,35(16):2845-2860.
    [7]
    NANCY E W. Some aspects of dense fog in the Midwestern United States[J]. Weather & Forecasting, 2007,22(6):457-465.
    [8]
    花丛, 张碧辉, 张恒德. 2013年1—2月华北雾、霾天气边界层特征对比分析[J]. 气象, 2015,41(9):1144-1151.

    HUA C, ZHANG B H, ZHANG H D. Analysis on boundary layer characteristics in fog and haze processes in North China from January to February 2013[J]. Meteorological Monthly, 2015,41(9):1144-1151.
    [9]
    马翠平, 吴彬贵, 李江波, 等. 一次持续性大雾边界层结构特征及诊断分析[J]. 气象, 2014,40(6):715-722.

    MA C P, WU B G, LI J B, et al. Boundary layer structure features and diagnostic analysis of one successive heavy fog event[J]. Meteorological Monthly, 2014,40(6):715-722.
    [10]
    李德平, 程兴宏, 于永涛, 等. 北京地区三级以上污染日的气象影响因子初步分析[J]. 气象与环境学报, 2010,26(3):7-13.

    LI D P, CHENG X H, YU Y T, et al. Effects of meteorological factors on air quality above the third grade pollution in Beijing[J]. Journal of Meteorology and Environment, 2010,26(3):7-13.
    [11]
    齐佳慧, 郝巨飞, 王丛梅, 等. 河北邢台市连续重污染天气维持与消散成因分析[J]. 沙漠与绿洲气象, 2019,13(1):122-129.

    QI J H, HAO J F, WANG C M, et al. Causes of the maintenance and dissipation of continuous heavy pollution in Xingtai City[J]. Desert and Oasis Meteorology, 2019,13(1):122-129.
    [12]
    廖晓农, 张小玲, 王迎春, 等. 北京地区冬夏季持续性雾-霾发生的环境气象条件对比分析[J]. 环境科学, 2014,35(6):2031-2044.

    LIAO X N, ZHANG X L, WANG Y C, et al. Comparative analysis on meteorological condition for persistent haze cases in summer and winter in Beijing[J]. Environmental Science, 2014,35(6):2031-2044.
    [13]
    滑申冰, 师华定, 王堃, 等. 2016—2017年冬季华北地区一次重污染过程的气象条件分析[J]. 气象与环境科学, 2018,41(4):47-53.

    HUA S B, SHI H D, WANG K, et al. Analysis of meteorological conditions for a heavy pollution process in North China during 2016-2017 winter[J]. Meteorological and Environmental Sciences, 2018,41(4):47-53.
    [14]
    王冠岚, 薛建军, 张建忠. 2014年京津冀空气污染时空分布特征及主要成因分析[J]. 气象与环境科学, 2016,39(1):34-42.

    WANG G L, XUE J J, ZHANG J Z. Analysis of spatial-temporal distribution characteristics and main cause of air pollution in Beijing-Tianjin-Hebei Region in 2014[J]. Meteorological and Environmental Sciences, 2016,39(1):34-42.
    [15]
    郭蕊, 段浩, 马翠平, 等. 河北中南部连续12 d重霾污染天气过程特征及影响因素分析[J]. 气象, 2016,42(5):589-597.

    GUO R, DUAN H, MA C P, et al. Analysis on the characters and influencing factors of a 12 d heavy haze pollution weather process[J]. Meteorological Monthly, 2016,42(5):589-597.
    [16]
    吴进, 李琛, 孙兆彬, 等. 北京地区两次重污染过程中PM2.5浓度爆发性增长及维持的气象条件[J]. 干旱气象, 2017,35(5):830-838.

    WU J, LI C, SUN Z B, et al. Meteorological condition of explosive increase and maintaining of PM2.5 concentration during two heavy pollution processes in Beijing[J]. Journal of Arid Meteorology, 2017,35(5):830-838.
    [17]
    环境保护部. 环境空气质量指数(AQI)技术规定(试行):HJ 633—2012[S]. 北京: 中国环境科学出版社, 2012.
    [18]
    中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003: 21-23.
    [19]
    中国气象局. 霾的观测和预报等级:QX/T 113—2010[S]. 北京: 气象出版社, 2010.
    [20]
    李江波, 赵玉广, 孔凡超, 等. 华北平原连续性大雾的特征分析[J]. 中国海洋大学学报(自然科学版), 2010,40(7):15-23.

    LI J B, ZHAO Y G, KONG F C, et al. Characteristics of sustained heavy fog in North China Plain[J]. Periodical of Ocean University of China, 2010,40(7):15-23.
    [21]
    孙彧, 牛涛, 乔林, 等. 华北地区雾和霾天气环流特征聚类分析[J]. 气候与环境研究, 2016,21(5):601-613.

    SUN Y, NIU T, QIAO L, et al. Cluster analysis of the circulation situation occurring during fog and haze weather in North China[J]. Climatic and Environmental Research, 2016,21(5):601-613.
    [22]
    许敏, 张瑜, 张绍恢. 风廓线雷达资料在冀中一次强降水天气预报中的应用[J]. 干旱气象, 2016,34(5):898-905.

    XU M, ZHANG Y, ZHANG S H. Application of wind profiler radar data in a heavy precipitation process in central Hebei Province[J]. Journal of Arid Meteorology, 2016,34(5):898-905.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(483) PDF Downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return