Volume 10 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
ZHAO Hanyan, ZHAO Rui, SUN Yuanyuan, ZHENG Mingxia, SU Jing, FU Xuemei, DING Hongyu. Watershed pollution source analysis based on receptor model and control unit division: taking Zhangjiakou section of Yongding River as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 758-768. doi: 10.12153/j.issn.1674-991X.20200008
Citation: ZHAO Hanyan, ZHAO Rui, SUN Yuanyuan, ZHENG Mingxia, SU Jing, FU Xuemei, DING Hongyu. Watershed pollution source analysis based on receptor model and control unit division: taking Zhangjiakou section of Yongding River as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(5): 758-768. doi: 10.12153/j.issn.1674-991X.20200008

Watershed pollution source analysis based on receptor model and control unit division: taking Zhangjiakou section of Yongding River as an example

doi: 10.12153/j.issn.1674-991X.20200008
More Information
  • Corresponding author: SU Jing E-mail: sujing169@163.com
  • Received Date: 2020-02-03
  • Publish Date: 2020-09-20
  • In order to identify the main sources of water pollution in Zhangjiakou section of the Yongding River, and to determine the key control industries and priority control units of the basin, the receptor model was combined with the control unit division to establish the analysis method of pollution sources in the basin. Based on the water system distribution, administrative divisions and digital elevation model (DEM) data, the study area was divided into 16 control units. Cluster analysis was used to analyze the spatial characteristics of the water quality and pollution sources. Factor analysis and absolute principal component scores-multiple linear regression (APCS-MLR) receptor model were used to identify the source of pollution and calculate the contribution rate. The results showed that, according to the degree of water pollution, the study area could be classified into area A (middle and lower reaches of the Yang River and the Qingshui River) with heavy pollution, and area B (upper reaches of the Yang River and the Qingshui River and the entire Sanggan River) with light pollution. Area A was mainly affected by the mixture of industrial point sources and non-point sources. The contribution rate of industrial point sources was 43%, and that of agricultural plant pollution was 44%. Area B was mainly polluted by non-point sources. The main pollution was sewage from rural life and tourism (30%), agricultural planting (18%), and livestock breeding (17%). According to the spatial characteristics of pollution sources, the key control industries in area A were metallurgical and food manufacturing, and that in area B were mining and food manufacturing. Besides, the control units No.2 and 3 covering Yangyuan County, No.5 covering northern Zhuolu County and northern Yu County, and No.14 covering Wanquan County were identified as priority prevention and control units of source pollution. The research showed that the method combined source analysis with control unit division can reflect the spatial differentiation characteristics of the water quality and improve the source analysis ability.

     

  • loading
  • [1]
    KAZI T G, ARAIN M B, JAMALI M K, et al. Assessment of water quality of polluted lake using multivariate statistical techniques:a case study[J]. Ecotoxicology and Environmental Safety, 2009,72(2):301-309.
    doi: 10.1016/j.ecoenv.2008.02.024 pmid: 18423587
    [2]
    卜红梅, 刘文治, 张全发. 多元统计方法在金水河水质时空变化分析中的应用[J]. 资源科学, 2009,31(3):429-434.

    BU H M, LIU W Z, ZHANG Q F. Application of multiple statistical analysis to spatial-temporal variations of water quality of the Jinshui River[J]. Resources Science, 2009,31(3):429-434.
    [3]
    王翠榆, 杨永辉, 周丰, 等. 沁河流域水体污染物时空分异特征及潜在污染源识别[J]. 环境科学学报, 2012,32(9):2267-2278.

    WANG C Y, YANG Y H, ZHOU F, et al. Spatio-temporal characteristics and source identification of water pollutants in River Qinhe Basin[J]. Acta Scientiae Circumstantiae, 2012,32(9):2267-2278.
    [4]
    HUANG F, WANG X Q, LOU L P, et al. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques[J]. Water Research, 2010,44(5):1562-1572.
    doi: 10.1016/j.watres.2009.11.003 pmid: 19944441
    [5]
    WANG Y, WANG P, BAI Y J, et al. Assessment of surface water quality via multivariate statistical techniques:a case study of the Songhua River Harbin region,China[J]. Journal of Hydro-environment Research, 2013,7(1):30-40.
    [6]
    窦筱艳, 赵雪艳, 徐珣, 等. 应用化学质量平衡模型解析西宁大气PM2.5的来源[J]. 中国环境监测, 2016,32(4):7-14.

    DOU X Y, ZHAO X Y, XU X, et al. Source apportionment of PM2.5 in Xining by the chemical mass balance[J]. Environmental Monitoring in China, 2016,32(4):7-14.
    [7]
    SALIM I, SAJJAD R U, PAULE-MERCADO M C, et al. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea[J]. Science of the Total Environment, 2019,663:764-775.
    pmid: 30738258
    [8]
    白一茹, 张兴, 赵云鹏, 等. 基于GIS和受体模型的枸杞地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2019,40(6):2885-2894.

    BAI Y R, ZHANG X, ZHAO Y P, et al. Spatial distribution characteristics and source apportionment of soil heavy metals in Chinese wolfberry land based on GIS and the receptor model[J]. Environmental Science, 2019,40(6):2885-2894.
    [9]
    何卓识, 李超灿, 张靖天, 等. 受体模型在湖泊沉积物中PAHs、PFASs和OCPs源解析比较[J]. 环境工程技术学报, 2018,8(3):231-240.

    HE Z S, LI C C, ZHANG J T, et al. Analysis and comparison of PAHs,PFASs and OCPs sources in lake sediments by receptor model[J]. Journal of Environmental Engineering Technology, 2018,8(3):231-240.
    [10]
    CHEN H, CHEN R, TENG Y, et al. Contamination characteristics,ecological risk and source identification of trace metals in sediments of the Le’an River (China)[J]. Ecotoxicology and Environmental Safety, 2016,125:85-92.
    pmid: 26685780
    [11]
    朱琳, 王雅南, 韩美, 等. 武水河水质时空分布特征及污染成因的解析[J]. 环境科学学报, 2018,38(6):2150-2156.

    ZHU L, WANG Y N, HAN M, et al. Spatio-temporal distribution of water quality and source identification of pollution in Wushui River Basin[J]. Acta Scientiae Circumstantiae, 2018,38(6):2150-2156.
    [12]
    YANG Y H, ZHOU F, GUO H C, et al. Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods[J]. Environmental Monitoring and Assessment, 2010,170(1/2/3/4):407-416.
    [13]
    LIU L L, DONG Y C, KONG M, et al. Insights into the long-term pollution trends and sources contributions in Lake Taihu,China using multi-statistic analyses models[J]. Chemosphere, 2020,242:125272.
    pmid: 31896182
    [14]
    李义禄, 张玉虎, 贾海峰, 等. 苏州古城区水体污染时空分异特征及污染源解析[J]. 环境科学学报, 2014,34(4):1032-1044.

    LI Y L, ZHANG Y H, JIA H F, et al. Spatio-temporal characteristics and source identification of water pollutants in ancient town of Suzhou[J]. Acta Scientiae Circumstantiae, 2014,34(4):1032-1044.
    [15]
    MENG L, ZUO R, WANG J S, et al. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model[J]. Journal of Contaminant Hydrology, 2018,218:70-83.
    [16]
    洪慧, 李娟, 汪洋, 等. 基于统计学方法的地下水水质评价与成因分析:以齐齐哈尔市为例[J]. 环境工程技术学报, 2019,9(4):431-439.

    HONG H, LI J, WANG Y, et al. Groundwater quality evaluation and genetic analysis based on statistical methods: taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology, 2019,9(4):431-439.
    [17]
    金陶陶. 流域水污染防治控制单元划分研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
    [18]
    陶华旸. 黄河甘肃流域水污染控制单元划分与控制目标预测分析[D]. 兰州:兰州大学, 2013.
    [19]
    毛光君. 河流污染物总量分配方法研究[D]. 北京:中国环境科学研究院, 2013.
    [20]
    方玉杰, 万金保, 罗定贵, 等. 流域总量控制下赣江流域控制单元划分技术[J]. 环境科学研究, 2015,28(4):540-549.

    FANG Y J, WAN J B, LUO D G, et al. Study on control unit division technology for total amount control in Gangjiang Basin[J]. Research of Environmental Sciences, 2015,28(4):540-549.
    [21]
    张家口市人民政府. 张家口经济年鉴[M]. 北京: 中国统计出版社, 2018.
    [22]
    WANG Y, ZHANG S, CUI W, et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River Basin,China:seasonal distribution,source apportionment,and potential risk assessment[J]. Science of the Total Environment, 2018,618:419-429.
    [23]
    国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
    [24]
    中国农业科学院农业环境与可持续发展研究所, 环境保护部南京环境科学研究所. 第一次全国污染源普查:农业污染源肥料流失系数手册[R]. 北京:国务院第一次全国污染源普查领导小组办公室, 2009.
    [25]
    中国农业科学院农业环境与可持续发展研究所, 环境保护部南京环境科学研究所. 第一次全国污染源普查畜禽养殖业源产排污系数手册[R]. 北京:国务院第一次全国污染源普查领导小组办公室, 2009.
    [26]
    张家口市水资源公报[A]. 张家口:张家口市水务局, 2018.
    [27]
    全国水环境容量核定技术指南[R]. 北京:中国环境规划院, 2003.
    [28]
    杜欢, 刘春敬, 宋漫利, 等. 河北省清水河流域农村生活污水产污特征[J]. 江苏农业科学, 2018,46(4):255-259.
    [29]
    SUNDARAY S K. Application of multivariate statistical techniques in hydrogeochemical studies:a case study:Brahmani-Koel River (India)[J]. Environmental Monitoring & Assessment, 2010,164(1/2/3/4):297.
    [30]
    邵志江, 刘莲, 汪涛. 永定河上游张家口地区主要河流污染物来源解析[J]. 环境污染与防治, 2020,42(2):204-211.

    SHAO Z J, LIU L, WANG T. Source analysis of main rivers’ pollutants of the upper reaches of Yongding River in Zhangjiakou area[J]. Environmental Pollution & Control, 2020,42(2):204-211.
    [31]
    徐华山, 徐宗学, 唐芳芳, 等. 漳卫南运河流域水质时空变化特征及其污染源识别[J]. 环境科学, 2012,33(2):359-369.

    XU H S, XU Z X, TANG F F, et al. Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River Basin[J]. Environmental Science, 2012,33(2):359-369.
    [32]
    张家口市城市总体规划(2001—2020年)(2011年修订)[A]. 石家庄:河北省人民政府, 2001.
    [33]
    SONKE J E, SIVRY Y, VIERS J, et al. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter[J]. Chemical Geology, 2008,252:145-157.
    [34]
    CHEN J B, GAILLARDET J, LOUVAT P, et al. Zn isotopes in the suspended load of the Seine River,France:isotopic variations and source determination[J]. Geochimica et Cosmochimica Acta, 2009,73:4060-4076.
    [35]
    THAPALIA A BORROK DM, van METRE P C,, et al. Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake[J]. Environmental Science and Technology, 2010,44(5):1544-1550.
    doi: 10.1021/es902933y pmid: 20143818
    [36]
    AGORHOM E A, LEM J P, SKINNER W, et al. Challenges and opportunities in the recovery/rejection of trace elements in copper flotation:a review[J]. Minerals Engineering, 2015,78:45-57.
    [37]
    DEHBANDI R, MOORE F, KESHAVARZI B. Geochemical sources, hydrogeochemical behavior,and health risk assessment of fluoride in an endemic fluorosis area, central Iran[J]. Chemosphere, 2018,193:763-776.
    pmid: 29175404
    [38]
    宋大平, 左强, 刘本生, 等. 农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J]. 农业环境科学学报, 2018,37(6):1219-1231.

    SONG D P, ZUO Q, LIU B S, et al. Estimation of spatio-temporal variability and health risks of nitrogen emissions from agricultural non-point source pollution:a case study of the Huaihe River Basin, China[J]. Journal of Agro-Environment Science, 2018,37(6):1219-1231.
    [39]
    YANG G, YU G R, LUO C Y, et al. Groundwater nitrogen pollution and assessment of its health risks:a case study of a typical village in rural-urban continuum,China[J]. PLoS One, 2012,7(4):e33982.
    pmid: 22514611
    [40]
    GUO W X, FU Y C, RUAN B Q, et al. Agricultural non-point source pollution in the Yongding River Basin[J]. Ecological Indicators, 2014,36:254-261.
    [41]
    WANG S, CAI L M, WEN H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province,China[J]. Science of the Total Environment, 2019,655:92-101.
    doi: 10.1016/j.scitotenv.2018.11.244 pmid: 30469072
    [42]
    滕智超, 丁爱中, 李亚惠, 等. 赤水河上游水质时空特征分析及其污染源解析[J]. 北京师范大学学报(自然科学版), 2016,52(3):322-327.

    TENG Z C, DING A Z, LI Y H. Sources of water pollution and their spatiotemporal variations in the upper reach of the Chishui River[J]. Journal of Beijing Normal University (Natural Science), 2016,52(3):322-327.
    [43]
    SHRESTHA S, KAZAMA F. Assessment of surface water quality using multivariate statistical techniques:a case study of the Fuji River Basin,Japan[J]. Environmental Modelling & Software, 2007,22:464-475.
    [44]
    WEISS D J, RAUSCH N, MASON T F D, et al. Atmospheric deposition and isotope biogeochemistry of zinc in ambrotophic peat[J]. Geochimica et Cosmochimica Acta, 2007,71:3498-3517.
    [45]
    吕睿喆, 王翔宇. 农副食品加工行业废水污染现状及对策研究[J]. 安徽农学通报, 2019,25(15):136-138.

    SONG R Z, WANG X Y. Current situation and countermeasure of wastewater pollution in agricultural and sideline food processing industry[J]. Anhui Agricultural Science Bulletin, 2019,25(15):136-138.
    [46]
    赵建国, 李洪波, 李霄宇, 等. 永定河怀来段水质污染特征及污染源解析[J]. 环境科学与技术, 2018,41(增刊1):299-306.

    ZHAO J G, LI H B, LI X Y, et al. Water pollution characteristics and pollution source of Yongdinghe River in Huailai[J]. Environmental Science & Technology, 2018,41(Suppl 1):299-306.
    [47]
    2017年张家口环境质量报告书[A]. 张家口:张家口市环境保护局, 2017.
    [48]
    张家口市人民政府办公室关于印发张家口市2017年度水污染防治工作实施方案的通知[A/OL]. (2018-06-07)[2020-02-01]. http://hb.zjk.gov.cn/contents/40/6748.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(559) PDF Downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return