Citation: | HE Zhuoshi, HUO Shouliang, MA Chunzi, ZHANG Hanxiao, HUANG Weihui. Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale: a case study in watersheds of Yan’an City[J]. Journal of Environmental Engineering Technology, 2020, 10(6): 964-970. doi: 10.12153/j.issn.1674-991X.20200025 |
[1] |
HUO S L, MA C Z, XI B D, et al. Development of methods for establishing nutrient criteria in lakes and reservoirs:a review[J]. Journal of Environmental Sciences, 2018,67(5):54-66.
|
[2] |
JANSSEN A B G, de JAGER V C L, JANSE J H, et al. Spatial identification of critical nutrient loads of large shallow lakes:implications for Lake Taihu(China)[J]. Water Research, 2017,119:276-287.
pmid: 28477543 |
[3] |
FEZZI C, HARWOOD A R, LOVETT A A, et al. The environmental impact of climate change adaptation on land use and water quality[J]. Nature Climate Change, 2015(5):255-260.
|
[4] |
JEZNACH L C, HAGEMANN M, PARK M H, et al. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir[J]. Journal of Environmental Management, 2017,201:241-251.
doi: 10.1016/j.jenvman.2017.06.047 pmid: 28667842 |
[5] |
HAGEMANN M. Predictive modeling of riverine constituent concentrations and loads using historic and imposed hydrologic conditions[M]. Massachusetts:Department of Civil and Environmental Engineering,University of Massachusetts, 2016.
|
[6] |
SCAVIA D, DAVID A J, AREND K K, et al. Assessing and addressing the re-eutrophication of Lake Erie:central basin hypoxia[J]. Journal of Great Lakes Research, 2014,40:226-246.
|
[7] |
DIAZ R J, ROSENBERG R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008,321:926-929.
pmid: 18703733 |
[8] |
HUO S L, HE Z S, MA C Z, et al. Spatio-temporal impacts of meteorological and geographic factors on the availability of nitrogen and phosphorus to algae in Chinese lakes[J]. Journal of Hydrology, 2019,572:380-387.
|
[9] |
HAVENS K E, PAERL H W. Climate change at a crossroad for control of harmful algal blooms[J]. Environmental Science & Technology, 2015,49:12605-12606.
doi: 10.1021/acs.est.5b03990 pmid: 26465060 |
[10] |
HONG B, SWANEY D P, MRTH C M, et al. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs(NANI/NAPI),major drivers,nutrient retention pattern and management implications in the multinational areas of Baltic Sea Basin[J]. Ecological Modelling, 2012,227:117-135.
|
[11] |
DEL-GIUDICE D, ZHOU Y, SINHA E, et al. Long-term phosphorus loading and springtime temperatures explain interannual variability of hypoxia in a large temperate lake[J]. Environmental Science & Technology, 2018,52:2046-2054.
pmid: 29301072 |
[12] |
SINHA E, MICHALAK A M. Precipitation dominates interannual variability of riverine nitrogen loading across the Continental United States[J]. Environmental Science & Technology, 2016,50:12874-12884.
doi: 10.1021/acs.est.6b04455 pmid: 27771946 |
[13] |
HO J C, MICHALAK A M. Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading[J]. Journal of Great Lakes Research, 2017,43:221-228.
|
[14] |
ZHOU Y, MICHALAK A M, BLELTSKY D, et al. Record-breaking Lake Erie hypoxia during 2012 drought[J]. Environmental Science & Technology, 2015,49:800-807.
pmid: 25522015 |
[15] |
DAVID M B, DRINKWATER L E, MCISAAC G F. Sources of nitrate yields in the Mississippi River Basin[J]. Journal of Environmental Quality, 2010,39:1657-1667.
doi: 10.2134/jeq2010.0115 pmid: 21043271 |
[16] |
SHI Y, WANG G, GAO X. Role of resolution in regional climate change projections over China[J]. Climate Dynamics, 2018,51:2375-2396.
|
[17] |
ZHOU B, XU Y, WU J, et al. Projected changes in haze pollution potential in China:an ensemble of regional climate model simulations[J]. Atmospheric Chemistry and Physics, 2017,17:10109-10123.
doi: 10.5194/acp-17-10109-2017 |
[18] |
张冬峰, 韩振宇, 石英. CSIRO-Mk3.6.0模式及其驱动下RegCM4.4模式对中国气候变化的预估[J]. 气候变化研究进展, 2017,13(6):557-568.
ZHANG D F, HAN Z Y, SHI Y. Comparison of climate projection between the driving CSIRO-Mk3.6.0 and the downscaling simulation of RegCM4.4 over China[J]. Climate Change Research, 2017,13(6):557-568.
|
[19] |
VUUREN D P V, EDMONDS J, KAINUMA M, et al. The representative concentration pathways:an overview[J]. Climatic Change, 2011,109(1/2):5-31.
doi: 10.1007/s10584-011-0148-z |
[20] |
SINHA E, MICHALAK A M, CALVIN K V, et al. Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century[J]. Nature Communications, 2019(10):939.
|
[21] |
TI C P, PAN J J, XIA Y Q, et al. A nitrogen budget of mainland China with spatial and temporal variation[J]. Biogeochemistry, 2012,108:381-394.
doi: 10.1007/s10533-011-9606-y |
[22] |
OBOUR A K, SILVERIA M L, VENDRAMINI J M B. A phosphorus budget for bahiagrass pastures growing on a typical florida spodosol[J]. Agronomy Journal, 2011,103:611-616.
doi: 10.2134/agronj2010.0372 |
[23] |
HAN Y, FAN Y, YANG P, et al. Net anthropogenic nitrogen inputs(NANI) index application in Mainland China[J]. Geoderma, 2014,213:87-94.
doi: 10.1016/j.geoderma.2013.07.019 |
[24] |
HAN Y, YU X, WANG X, et al. Net anthropogenic phosphorus inputs(NAPI) index application in Mainland China[J]. Chemosphere, 2013,90:329-337.
doi: 10.1016/j.chemosphere.2012.07.023 |
[25] |
SPRAGUE L A, HIRSCH R M, AULENBACH B T. Nitrate in the Mississippi River and its tributaries,1980 to 2008:are we making progress[J]. Environmental Science & Technology, 2011,45:7209-7216.
doi: 10.1021/es201221s pmid: 21823673 |
[26] |
HIRSCH R M, MOYER D L, ARCHFIELD S A. Weighted regressions on time,discharge,and season(WRTDS),with an application to chesapeake bay river inputs[J]. Journal of the American Water Resources Association, 2010,46:857-880.
doi: 10.1111/j.1752-1688.2010.00482.x pmid: 22457569 |
[27] |
李二辉, 穆兴民, 赵广举. 1919—2010年黄河上中游区径流量变化分析[J]. 水科学进展, 2014,25(2):155-163.
LI E H, MU X M, ZHAO G J. Temporal changes in annual runoff and influential factors in the upper and middle reaches of Yellow River from 1919-2010[J]. Advances in Water Science, 2014,25(2):155-163.
|
[28] |
张元星. 流域水沙变化对水土保持梯田措施的响应研究[D]. 杨凌:西北农林科技大学, 2014.
|
[29] |
WANG S, FU B, PIAO S, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2015(9):38-41.
|
[30] |
LI Z, LIU W Z, ZHANG X C, et al. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China[J]. Journal of Hydrology, 2009,377:35-42.
doi: 10.1016/j.jhydrol.2009.08.007 |
[31] |
赵跃中, 穆兴民, 严宝文, 等. 延河流域植被恢复对径流泥沙的影响[J]. 泥沙研究, 2014(4):67-73.
ZHAO Y Z, MU X M, YAN B W, et al. Influence of vegetation restoration on runoff and sediment of Yanhe Basin[J]. Journal of Sediment Research, 2014(4):67-73.
|
[32] |
MCISAAC G F, DAVID M B, GERTNER G Z. Illinois river nitrate-nitrogen concentrationsand loads:long-term variation and association with watershed nitrogen inputs[J]. Journal of Environmental Quality, 2016,45(4):1268-1275.
doi: 10.2134/jeq2015.10.0531 pmid: 27380075 |
[33] |
HONG B, SWANEY D P, HOWARTH R W. 30-A toolbox for calculating net anthropogenic nitrogen inputs(NANI)[J]. Environmental Modelling & Software, 2011,26:623-633.
|