Volume 10 Issue 6
Nov.  2020
Turn off MathJax
Article Contents
HE Zhuoshi, HUO Shouliang, MA Chunzi, ZHANG Hanxiao, HUANG Weihui. Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale: a case study in watersheds of Yan’an City[J]. Journal of Environmental Engineering Technology, 2020, 10(6): 964-970. doi: 10.12153/j.issn.1674-991X.20200025
Citation: HE Zhuoshi, HUO Shouliang, MA Chunzi, ZHANG Hanxiao, HUANG Weihui. Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale: a case study in watersheds of Yan’an City[J]. Journal of Environmental Engineering Technology, 2020, 10(6): 964-970. doi: 10.12153/j.issn.1674-991X.20200025

Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale: a case study in watersheds of Yan’an City

doi: 10.12153/j.issn.1674-991X.20200025
More Information
  • Corresponding author: HUO Shouliang E-mail: huoshouliang@126.com
  • Received Date: 2020-02-25
  • Publish Date: 2020-11-20
  • The external pollutant loading model and the nitrogen and phosphorus fluxes model, combining land use pattern and meteorological data, were used to established an empirical model of nitrogen and phosphorus loading in four river watersheds of Yan’an City, for analyzing the response relation of the fluxes of nitrogen and phosphorus on net anthropogenic nitrogen and phosphorus input, precipitation, land use pattern and other factors. According to the results, the net anthropogenic nitrogen and phosphorus input, precipitation and land use pattern were the main causes for the change of the nitrogen and phosphorus fluxes. Precipitation could respectively explain 25.67% and 18.29% of the nitrogen and phosphorus fluxes variation, and the increasing precipitation will significantly increase the nitrogen and phosphorus fluxes. A meteorological dataset from regional climate models was used to simulate the short-term and long-term variation of nitrogen and phosphorus fluxes under different development scenarios, and the results showed that driven by the change of climate, even if the net anthropogenic nitrogen and phosphorus loading and the land use pattern remained unchanged, the future nitrogen and phosphorus fluxes would still increase in the long-term prediction. The increasing of forest land could mitigate a certain extent of the influence of precipitation on nitrogen and phosphorus fluxes. These results indicated that climate change as well as anthropogenic activities could affect the nitrogen and phosphorus fluxes, and the impact of climate change on the effectiveness of nitrogen and phosphorus reduction programs should be considered while formulating the nitrogen and phosphorus reduction programs.

     

  • loading
  • [1]
    HUO S L, MA C Z, XI B D, et al. Development of methods for establishing nutrient criteria in lakes and reservoirs:a review[J]. Journal of Environmental Sciences, 2018,67(5):54-66.
    [2]
    JANSSEN A B G, de JAGER V C L, JANSE J H, et al. Spatial identification of critical nutrient loads of large shallow lakes:implications for Lake Taihu(China)[J]. Water Research, 2017,119:276-287.
    pmid: 28477543
    [3]
    FEZZI C, HARWOOD A R, LOVETT A A, et al. The environmental impact of climate change adaptation on land use and water quality[J]. Nature Climate Change, 2015(5):255-260.
    [4]
    JEZNACH L C, HAGEMANN M, PARK M H, et al. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir[J]. Journal of Environmental Management, 2017,201:241-251.
    doi: 10.1016/j.jenvman.2017.06.047 pmid: 28667842
    [5]
    HAGEMANN M. Predictive modeling of riverine constituent concentrations and loads using historic and imposed hydrologic conditions[M]. Massachusetts:Department of Civil and Environmental Engineering,University of Massachusetts, 2016.
    [6]
    SCAVIA D, DAVID A J, AREND K K, et al. Assessing and addressing the re-eutrophication of Lake Erie:central basin hypoxia[J]. Journal of Great Lakes Research, 2014,40:226-246.
    [7]
    DIAZ R J, ROSENBERG R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008,321:926-929.
    pmid: 18703733
    [8]
    HUO S L, HE Z S, MA C Z, et al. Spatio-temporal impacts of meteorological and geographic factors on the availability of nitrogen and phosphorus to algae in Chinese lakes[J]. Journal of Hydrology, 2019,572:380-387.
    [9]
    HAVENS K E, PAERL H W. Climate change at a crossroad for control of harmful algal blooms[J]. Environmental Science & Technology, 2015,49:12605-12606.
    doi: 10.1021/acs.est.5b03990 pmid: 26465060
    [10]
    HONG B, SWANEY D P, MRTH C M, et al. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs(NANI/NAPI),major drivers,nutrient retention pattern and management implications in the multinational areas of Baltic Sea Basin[J]. Ecological Modelling, 2012,227:117-135.
    [11]
    DEL-GIUDICE D, ZHOU Y, SINHA E, et al. Long-term phosphorus loading and springtime temperatures explain interannual variability of hypoxia in a large temperate lake[J]. Environmental Science & Technology, 2018,52:2046-2054.
    pmid: 29301072
    [12]
    SINHA E, MICHALAK A M. Precipitation dominates interannual variability of riverine nitrogen loading across the Continental United States[J]. Environmental Science & Technology, 2016,50:12874-12884.
    doi: 10.1021/acs.est.6b04455 pmid: 27771946
    [13]
    HO J C, MICHALAK A M. Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading[J]. Journal of Great Lakes Research, 2017,43:221-228.
    [14]
    ZHOU Y, MICHALAK A M, BLELTSKY D, et al. Record-breaking Lake Erie hypoxia during 2012 drought[J]. Environmental Science & Technology, 2015,49:800-807.
    pmid: 25522015
    [15]
    DAVID M B, DRINKWATER L E, MCISAAC G F. Sources of nitrate yields in the Mississippi River Basin[J]. Journal of Environmental Quality, 2010,39:1657-1667.
    doi: 10.2134/jeq2010.0115 pmid: 21043271
    [16]
    SHI Y, WANG G, GAO X. Role of resolution in regional climate change projections over China[J]. Climate Dynamics, 2018,51:2375-2396.
    [17]
    ZHOU B, XU Y, WU J, et al. Projected changes in haze pollution potential in China:an ensemble of regional climate model simulations[J]. Atmospheric Chemistry and Physics, 2017,17:10109-10123.
    doi: 10.5194/acp-17-10109-2017
    [18]
    张冬峰, 韩振宇, 石英. CSIRO-Mk3.6.0模式及其驱动下RegCM4.4模式对中国气候变化的预估[J]. 气候变化研究进展, 2017,13(6):557-568.

    ZHANG D F, HAN Z Y, SHI Y. Comparison of climate projection between the driving CSIRO-Mk3.6.0 and the downscaling simulation of RegCM4.4 over China[J]. Climate Change Research, 2017,13(6):557-568.
    [19]
    VUUREN D P V, EDMONDS J, KAINUMA M, et al. The representative concentration pathways:an overview[J]. Climatic Change, 2011,109(1/2):5-31.
    doi: 10.1007/s10584-011-0148-z
    [20]
    SINHA E, MICHALAK A M, CALVIN K V, et al. Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century[J]. Nature Communications, 2019(10):939.
    [21]
    TI C P, PAN J J, XIA Y Q, et al. A nitrogen budget of mainland China with spatial and temporal variation[J]. Biogeochemistry, 2012,108:381-394.
    doi: 10.1007/s10533-011-9606-y
    [22]
    OBOUR A K, SILVERIA M L, VENDRAMINI J M B. A phosphorus budget for bahiagrass pastures growing on a typical florida spodosol[J]. Agronomy Journal, 2011,103:611-616.
    doi: 10.2134/agronj2010.0372
    [23]
    HAN Y, FAN Y, YANG P, et al. Net anthropogenic nitrogen inputs(NANI) index application in Mainland China[J]. Geoderma, 2014,213:87-94.
    doi: 10.1016/j.geoderma.2013.07.019
    [24]
    HAN Y, YU X, WANG X, et al. Net anthropogenic phosphorus inputs(NAPI) index application in Mainland China[J]. Chemosphere, 2013,90:329-337.
    doi: 10.1016/j.chemosphere.2012.07.023
    [25]
    SPRAGUE L A, HIRSCH R M, AULENBACH B T. Nitrate in the Mississippi River and its tributaries,1980 to 2008:are we making progress[J]. Environmental Science & Technology, 2011,45:7209-7216.
    doi: 10.1021/es201221s pmid: 21823673
    [26]
    HIRSCH R M, MOYER D L, ARCHFIELD S A. Weighted regressions on time,discharge,and season(WRTDS),with an application to chesapeake bay river inputs[J]. Journal of the American Water Resources Association, 2010,46:857-880.
    doi: 10.1111/j.1752-1688.2010.00482.x pmid: 22457569
    [27]
    李二辉, 穆兴民, 赵广举. 1919—2010年黄河上中游区径流量变化分析[J]. 水科学进展, 2014,25(2):155-163.

    LI E H, MU X M, ZHAO G J. Temporal changes in annual runoff and influential factors in the upper and middle reaches of Yellow River from 1919-2010[J]. Advances in Water Science, 2014,25(2):155-163.
    [28]
    张元星. 流域水沙变化对水土保持梯田措施的响应研究[D]. 杨凌:西北农林科技大学, 2014.
    [29]
    WANG S, FU B, PIAO S, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes[J]. Nature Geoscience, 2015(9):38-41.
    [30]
    LI Z, LIU W Z, ZHANG X C, et al. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China[J]. Journal of Hydrology, 2009,377:35-42.
    doi: 10.1016/j.jhydrol.2009.08.007
    [31]
    赵跃中, 穆兴民, 严宝文, 等. 延河流域植被恢复对径流泥沙的影响[J]. 泥沙研究, 2014(4):67-73.

    ZHAO Y Z, MU X M, YAN B W, et al. Influence of vegetation restoration on runoff and sediment of Yanhe Basin[J]. Journal of Sediment Research, 2014(4):67-73.
    [32]
    MCISAAC G F, DAVID M B, GERTNER G Z. Illinois river nitrate-nitrogen concentrationsand loads:long-term variation and association with watershed nitrogen inputs[J]. Journal of Environmental Quality, 2016,45(4):1268-1275.
    doi: 10.2134/jeq2015.10.0531 pmid: 27380075
    [33]
    HONG B, SWANEY D P, HOWARTH R W. 30-A toolbox for calculating net anthropogenic nitrogen inputs(NANI)[J]. Environmental Modelling & Software, 2011,26:623-633.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(671) PDF Downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return