Citation: | FU Liya, WU Changyong, ZHOU Jian, LUO Jin, ZUO Jian’e, ZHOU Yuexi. Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J]. Journal of Environmental Engineering Technology, 2021, 11(1): 135-143. doi: 10.12153/j.issn.1674-991X.20200061 |
[1] |
生态环境部. 环境统计年鉴[M]. 北京:中国环境年鉴社, 2018.
|
[2] |
WU C Y, LI Y N, ZHOU Y X, et al. Upgrading the Chinese biggest petrochemical wastewater treatment plant:technologies research and full scale application[J]. Science of the Total Environment, 2018,633:189-197.
|
[3] |
WU C Y, ZHOU Y X, SUN X M, et al. The recent development of advanced wastewater treatment by ozone and biological aerated filter[J]. Environmental Science Pollution Research, 2018,25(9):8315-8329.
doi: 10.1007/s11356-018-1393-8 pmid: 29411279 |
[4] |
RIED A, MIELCKE J, WIELAND A, et al. An overview of the integration of ozone systems in biological treatment steps[J]. Water Science & Technology, 2007,55(12):253-258.
pmid: 17674856 |
[5] |
钱宇章. BAF新工艺在印染废水处理中的应用研究[D]. 广州:华南理工大学, 2010.
|
[6] |
HE Y, WANG X, XU J, et al. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents[J]. Bioresource Technology, 2013,133:150-157.
|
[7] |
齐鲁青. 臭氧-BAF降解染料废水及微生物特性的研究[D]. 广州:华南师范大学, 2012.
|
[8] |
颜金利. 一体式O3-BAF深度处理印染纺织废水工程化应用研究[D]. 广州:华南理工大学, 2012.
|
[9] |
FU L Y, WU C Y, ZHOU Y X, et al. Effects of residual ozone on the performance of microorganisms treating petrochemical wastewater[J]. Environmental Science Pollution Research, 2019,26(26):27505-27515.
pmid: 31332684 |
[10] |
凌珠钦, 汪晓军, 王开演. 臭氧-BAF工艺深度处理石化废水[J]. 应用化工, 2008,37(8):917-920.
|
[11] |
IIACONI C D. Biological treatment and ozone oxidation:integration or coupling[J]. Bioresource Technology, 2012,106:63-68.
pmid: 22206914 |
[12] |
WU C Y, GAO Z, ZHOU Y X, et al. Treatment of secondary effluent from a petrochemical wastewater treatment plant by ozonation-biological aerated filter[J]. Journal of Chemical Technology and Biotechnology, 2015,90(3):543-549.
|
[13] |
WU C Y, ZHOU Y X, WANG Y, et al. Innovative combination of Fe2+-BAF and ozonation for enhancing phosphorus and organic micropollutants removal treating petrochemical secondary effluent[J]. Journal of Hazardous Materials, 2016,323:654-662.
pmid: 27776874 |
[14] |
LOTITO A M, FRATINO U, BERGNA G, et al. Integrated biological and ozone treatment of printing textile wastewater[J]. Chemical Engineering Journal, 2012, 195-196:261-269.
doi: 10.1016/j.cej.2012.05.006 |
[15] |
FU L Y, WU C Y, ZHOU Y X, et al. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone,ozone/H2O2,and ozone/catalyst[J]. Chemosphere, 2019,233:34-43.
doi: 10.1016/j.chemosphere.2019.05.207 pmid: 31163306 |
[16] |
ZHOU Q, CABANISS S E, MAURICE P A. Considerations in the use of highpressure size exclusion chromatography(HPSEC)for determining molecular weights of aquatic humic substances[J]. Water Research, 2000,34(14):3505-3514.
|
[17] |
IGNATEV A, TUHKANEN T. Monitoring WWTP performance using size-exclusion chromatography with simultaneous UV and fluorescence detection to track recalcitrant wastewater fractions[J]. Chemosphere, 2019,214:587-597.
pmid: 30286425 |
[18] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003,37(24):5701-5710.
doi: 10.1021/es034354c pmid: 14717183 |
[19] |
MENG F, ZHOU Z, NI B J, et al. Characterization of the size-fractionated biomacromolecules:tracking their role and fate in a membrane bioreactor[J]. Water Research, 2011,45(15):4661-4671.
doi: 10.1016/j.watres.2011.06.026 pmid: 21757216 |
[20] |
NI B J, RITTMANN B E, YU H Q. Soluble microbial products and their implications in mixed culture biotechnology[J]. Trends in Biotechnology, 2011,29(9):454-463.
pmid: 21632131 |
[21] |
高祯, 吴昌永, 周岳溪, 等. 臭氧预氧化对石化污水厂二级出水水质的作用[J]. 化工学报, 2013,64(9):3390-3395.
GAO Z, WU C Y, ZHOU Y X, et al. Effect of pre-ozonation on biological effluent of petrochemical wastewater treatment plant[J]. CIESC Journal, 2013,64(9):3390-3395.
|
[22] |
魏祥甲, 王兰, 乔瑞平, 等. O3/H2O2深度氧化处理石化废水的研究[J]. 工业用水与废水, 2014,45(6):23-27.
WEI X J, WANG L, QIAO R P, et al. Study on advanced treatment of petrochemical wastewater by O3-H2O2 combined oxidation[J]. Industrial Water & Wastewater, 2014,45(6):23-27.
|
[23] |
王倩. O3/UV/H2O2-BAC深度处理兰州石化二级废水实验研究[D]. 兰州:兰州交通大学, 2013.
|
[24] |
YO S H. Three oxidation systems (O3,H2O2,H2O2/O3) for the secondary treatment wastewater of petrochemical plants[J]. Journal of the Chinese Institute of Environmental Engineering, 1997,7(1):43-48.
|
[25] |
ZHANG S Y, WU C Y, ZHOU Y X, et al. Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent[J]. Chemical Engineering Journal, 2018,345:280-289.
|
[26] |
SUN X M, WU C Y, ZHOU Y X, et al. Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater[J]. Chemical Engineering Journal, 2019,369:100-108.
|
[27] |
VON GUNTEN U. Ozonation of drinking water:part Ⅰ.oxidation kinetics and product formation[J]. Water Research, 2003,37(7):1443-1467.
pmid: 12600374 |
[28] |
HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water:Ⅰ.non-dissociating organic compounds[J]. Water Research, 1983,17(2):173-183.
|
[29] |
HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water:Ⅱ.dissociating organic compounds[J]. Water Research, 1983,17(2):185-194.
|
[30] |
FU L Y, WU C Y, ZHOU Y X, et al. Investigation on evaluation criteria of backwashing effects for a pilot-scale BAF treating petrochemical wastewater[J]. Environmental Technology, 2017,38(20):2523-2533.
doi: 10.1080/09593330.2016.1269838 pmid: 27927071 |
[31] |
FU L Y, WU C Y, ZHOU Y X, et al. Treatment of petrochemical secondary effluent by an up-flow biological aerated filter(BAF)[J]. Water Science & Technology, 2016,73(8):2031-2038.
|
[32] |
魏复盛. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
|
[33] |
CHIN Y P, AIKEN G, O’LOUGHLIN E. Molecular weight,polydispersity and spectroscopic properties of aquatic humic substances[J]. Environmental Science & Technology, 1994,28(11):1853-1858.
doi: 10.1021/es00060a015 pmid: 22175925 |
[34] |
CHOW C W, FABRIS R, VAN L J, et al. Assessing natural organic matter treatability using high performance size exclusion chromatography[J]. Environmental Science & Technology, 2008,42(17):6683-6689.
doi: 10.1021/es800794r pmid: 18800549 |
[35] |
付丽亚. 石化废水臭氧/曝气生物滤池深度处理工艺与机理研究[D]. 北京:清华大学, 2018.
|
[36] |
GLAZE W H, KANG J W. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE:laboratory studies[J]. Journal American Water Works Association, 1988,88:57-63.
|
[37] |
ALLEMANE H, DELOUANE B, PAILLARD H, et al. Comparative efficiency of three systems (O3,O3/H2O2,and O3/TiO2) for the oxidation of natural organic matter in water[J]. Ozone-Science Engineering, 1993,15(5):419-432.
|
[38] |
LIN C K, TSAI T Y, LIU J C, et al. Enhanced biodegradation of petrochemical wastewater using ozonation and BAC advanced treatment system[J]. Water Research, 2001,35(3):699-704.
doi: 10.1016/s0043-1354(00)00254-2 pmid: 11228967 |
[39] |
YAN S T, CHU L B, XING X H, et al. Analysis of the mechanism of sludge ozonation by a combination of biological and chemical approaches[J]. Water Research, 2009,43(1):195-203.
doi: 10.1016/j.watres.2008.09.039 |
[40] |
KUO W C, PARKIN G F. Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties[J]. Water Research, 1996,30(4):915-922.
doi: 10.1016/0043-1354(95)00201-4 |