Volume 11 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
JIN Weidong, JIAO Julong, LI Jianping, YANG Suwen, YAN Yuhong, ZHANG Yue. Operation effect and microbial community changes of A/O denitrification reactor enhanced by microbial agents[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 354-364. doi: 10.12153/j.issn.1674-991X.20200083
Citation: JIN Weidong, JIAO Julong, LI Jianping, YANG Suwen, YAN Yuhong, ZHANG Yue. Operation effect and microbial community changes of A/O denitrification reactor enhanced by microbial agents[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 354-364. doi: 10.12153/j.issn.1674-991X.20200083

Operation effect and microbial community changes of A/O denitrification reactor enhanced by microbial agents

doi: 10.12153/j.issn.1674-991X.20200083
More Information
  • Corresponding author: YANG Suwen E-mail: yangsw@craes.org.cn
  • Received Date: 2020-04-09
  • Publish Date: 2021-03-20
  • A reactor which combined traditional anoxic aerobic process with biofilm was applied to treat simulated domestic sewage, of which the optimum operating condition was determined by adjusting the hydraulic residence time (HRT), carbon/nitrogen ratio (C/N) and reflux ratio of nitrating liquid. Besides, the operation efficiency of the reactor was investigated by adding ammonia nitrogen removal agent and denitrifying agent. The results showed that the reactor tended to be stabilized in 30 days after startup. When the HRT was 24 h, C/N was 4, and reflux ratio was 200%, the reactor operating effect was the best. The average removal rates of chemical oxygen demand (COD), ammonia nitrogen ( NH 4 + -N) and total nitrogen (TN) was 80.3%, 79.9% and 47.8%, respectively. The capacity of the reactor to remove ammonia nitrogen was strengthened after adding microbial agent. Accordingly, the average removal rates of the three pollutants turned into 79.5%, 90.2% and 56.6%, respectively, among which the maximum removal rate of TN could be increased to 70.0%. Besides, the tolerance of reactor to influent load was improved to a certain extent. Furthermore, the high throughput sequencing (HTS) analysis showed that Proteobacteria and Bacteroidetes were the main functional microorganisms in the original sludge, of which the total relative abundance ratios were 77.8%. During the operation of the reactor system, the relative abundance of the two phyla showed a tendency of decreasing first, then increased and tended to be stable. After the addition of microbial agent, the species number and diversity of microorganisms in the anoxic pool increased significantly, and the relative abundance of the two phyla in the aerobic pool reached 92.3%.

     

  • loading
  • [1]
    文娅, 赵国柱, 周传斌, 等. 生态工程领域微生物菌剂研究进展[J]. 生态学报, 2011,31(20):6287-6294.

    WEN Y, ZHAO G Z, ZHOU C B, et al. Research progress of microbial agents in ecological engineering[J]. Acta Ecologica Sinica, 2011,31(20):6287-6294.
    [2]
    唐伟, 张远, 王书平, 等. 微生物菌剂在水体修复中的应用进展[J]. 环境工程技术学报, 2019,9(2):151-158.

    TANG W, ZHANG Y, WANG S P, et al. Application progress of microbial agents in water remediation[J]. Journal of Environmental Engineering Technology, 2019,9(2):151-158.
    [3]
    祝虹钰, 刘闯, 李蓬勃, 等. 微生物菌剂的应用及其研究进展[J]. 湖北农业科学, 2017,56(5):805-808.

    ZHU H Y, LIU C, LI P B, et al. Application and progress of research of microorganisms agents[J]. Hubei Agricultural Sciences, 2017,56(5):805-808.
    [4]
    杨玥, 钟惠舟. MABR与微生物菌剂联用治理小型黑臭河道的效果[J]. 环境工程技术学报, 2020,10(5):853-859.

    YANG Y, ZHONG H Z. Study on the treatment effect of a small black and odorous river by MABR and microbial inoculant[J]. Journal of Environmental Engineering Technology, 2020,10(5):853-859.
    [5]
    严磊, 陈杏娟, 杨永刚, 等. 微生物对水环境污染物的趋化性研究进展[J]. 微生物学杂志, 2018,38(5):106-111.

    YAN L, CHEN X J, YANG Y G, et al. Chemotaxis of functional microorganisms to pollutants in aquatic environment[J]. Journal of Microbiology, 2018,38(5):106-111.
    [6]
    谭周亮, 杨俊仕, 李旭东. 微生物菌剂强化处理炼油废水的中试研究[J]. 水处理技术, 2007,33(2):67-70.

    TAN Z L, YANG J S, LI X D. Pilot-scale research on oil refinery wastewater treatment by microorganism agent[J]. Technology of Water Treatment, 2007,33(2):67-70.
    [7]
    LUDZACK F J, ETTINGER M B. Controlling operation to minimize activated sludge effluent nitrogen[J]. Journal of Water Pollution Control Federation, 1962,34(9):920-931.
    [8]
    ZHOU H X, LI X K, CHU Z R, et al. Effect of temperature downshifts on a bench-scale hybrid A/O system:process performance and microbial community dynamics[J]. Chemosphere, 2016,153:500-507.
    [9]
    李捷, 崔康平, 王开春, 等. A/O装置快速培养处理低C/N污水的活性污泥的研究[J]. 水处理技术, 2017,43(7):103-105.

    LI J, CUI K P, WANG K C, et al. Research on low C/N wastewater treatment by A/O device rapid cultured activated sludge[J]. Technology of Water Treatment, 2017,43(7):103-105.
    [10]
    王怡, 常彬河, 刘月, 等. 基于MiSeq测序分析酸性农作物土壤细菌群落结构与多样性[J]. 环境科学研究, 2019,32(9):1575-1583.

    WANG Y, CHANG B H, LIU Y, et al. Analysis of bacterial community composition and diversity in acid soil using MiSeq sequencing[J]. Research of Environmental Sciences, 2019,32(9):1575-1583.
    [11]
    苏鑫, 郭迎岚, 卢嫚, 等. 3种碳添加对退化农田土壤固碳细菌群落结构多样性的影响[J]. 环境科学学报, 2020,40(1):234-241.

    SU X, GUO Y L, LU M, et al. Effects of three kinds of carbon addition on community structure diversity of CO2-assimilating bacterial in degraded farmland soil[J]. Acta Scientiae Circumstantiae, 2020,40(1):234-241.
    [12]
    梁启煜, 王迎春, 刘志刚, 等. 一体化厌氧氨氧化反应器工艺运行优化研究[J]. 环境科学与技术, 2019,42(7):88-94.

    LIANG Q Y, WANG Y C, LIU Z G, et al. Optimization of nitrosated-ANAMMOX integration reactor[J]. Environmental Science & Technology, 2019,42(7):88-94.
    [13]
    国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002:243-284.
    [14]
    李德豪, 凌洪吉, 谢文玉. 一体化A/O移动床生物膜反应器中DO、TN分布及脱氮效果研究[J]. 环境工程学报, 2009,3(12):2203-2207.

    LI D H, LING H J, XIE W Y. Distributions of dissolved oxygen and total nitrogen and efficiency of nitrogen removal in the integrative A/O moving bed biofilm reactor[J]. Chinese Journal of Environmental Engineering, 2009,3(12):2203-2207.
    [15]
    谢文玉, 李德豪, 钟华文, 等. 一体化A/O生物膜反应器脱氮特性研究[J]. 环境工程学报, 2011,5(3):570-574.

    XIE W Y, LI D H, ZHONG H W, et al. Study on nitrogen removal performance of an integrated A/O biofilm reactor[J]. Chinese Journal of Environmental Engineering, 2011,5(3):570-574.
    [16]
    慕银银. 水力停留时间对分置式厌氧膜生物反应器污泥混合液性质和膜污染的影响研究[D]. 西安:西安建筑科技大学, 2015.
    [17]
    刘月敏, 焦秀梅, 崖婷婷, 等. 水力停留时间对反应沉淀一体化反应器中半亚硝化反应的影响[J]. 环境工程学报, 2014,8(1):116-120.

    LIU Y M, JIAO X M, YA T T, et al. Effect of hydraulic retention time on half-nitrosofication in integrated reaction-precipitation reactor[J]. Chinese Journal of Environmental Engineering, 2014,8(1):116-120.
    [18]
    李冬, 郭跃洲, 劳会妹, 等. 进水碳氮比对缺氧/好氧SBR亚硝化系统的影响[J]. 哈尔滨工业大学学报, 2019,51(2):1-7.

    LI D, GUO Y Z, LAO H M, et al. Effect of influent C/N on anoxic/aerobic SBR nitritation system[J]. Journal of Harbin Institute of Technology, 2019,51(2):1-7.
    [19]
    胡国威, 黄瑞敏, 张碗林, 等. 缺氧/三级好氧移动床生物膜反应器对印染废水的脱氮效果研究[J]. 环境污染与防治, 2017,39(10):1140-1142.

    HU G W, HUANG R M, ZHANG W L, et al. Nitrogen removal for the printing and dyeing wastewater by anoxic/three stage aerobic MBBR process[J]. Environmental Pollution & Control, 2017,39(10):1140-1142.
    [20]
    姚思剑, 袁蓉芳, 周北海. A/O接触氧化工艺参数对系统微生物群落的影响[J]. 环境工程, 2019,37(增刊):1137-1142.

    YAO S J, YUAN R F, ZHOU B H. Study on the influence of process parameters of A/O contact oxidation on system microbial community[J]. Environmental Engineering, 2019,37(Suppl):1137-1142.
    [21]
    SHU D T, HE Y L, YUE H, et al. Metagenomic insights into the effects of volatile fatty acids on microbial community structures and functional genes in organotrophic anammox process[J]. Bioresource Technology, 2015,196:621-633.
    [22]
    赵立君, 任伟, 郑毅, 等. 砷污染湿地生境下土壤微生物多样性及群落结构特征[J]. 环境科学研究, 2019,32(1):150-158.

    ZHAO L J, REN W, ZHENG Y, et al. Characteristics of soil microbial diversity and community structure in arsenic-polluted wetland habitats[J]. Research of Environmental Sciences, 2019,32(1):150-158.
    [23]
    刁晓君, 李一葳, 王曙光. 水华生消过程对巢湖沉积物微生物群落结构的影响[J]. 环境科学, 2015,36(1):107-113.

    DIAO X J, LI Y W, WANG S G. Effects of outbreak and extinction of algal blooms on the microbial community structure in sediments of Chaohu Lake[J]. Environmental Science, 2015,36(1):107-113.
    [24]
    王智, 张志勇, 张君倩, 等. 水葫芦修复富营养化湖泊水体区域内外底栖动物群落特征[J]. 中国环境科学, 2012,32(1):142-149.

    WANG Z, ZHANG Z Y, ZHANG J Q, et al. The fauna structure of benthic macro-invertebrates for environmental restoration in a eutrophic lake using water hyacinths[J]. China Environmental Science, 2012,32(1):142-149.
    [25]
    SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948,27(3):379-423.
    [26]
    OBERAUNER L, ZACHOW C, LACKNER S, et al. The ignored diversity: complex bacterial communities in intensive care units revealed by 16S pyrosequencing[J]. Scientific Reports, 2013,3(1):1413-1424.
    [27]
    LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014,64:237-254.
    [28]
    ANDREW D V G, DANIEL G, MITCHELL S, et al. Impact of upstream chlorination on filter performance and microbial community structure of GAC and anthracite biofilters[J]. Environmental Science Water Research & Technology, 2018,4(8):1133-1144.
    [29]
    汪瑶琪, 张敏, 姜滢, 等. 厌氧氨氧化启动过程及微生物群落结构特征[J]. 环境科学, 2017,38(12):5184-5191.

    WANG Y Q, ZHANG M, JIANG Y, et al. Start-up and characteristics of the microbial community structure of ANAMMOX[J]. Environmental Science, 2017,38(12):5184-5191.
    [30]
    CYDZIK-KWIATKOWSKA A, ZIELINSKA M, Bacterial communities in full-scale wastewater treatment systems[J]. World Journal of Microbiology and Biotechnology, 2016,32(4):1-8.
    [31]
    DU D L, ZHANG C Y, ZHAO K X, et al. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Frontiers of Environmental Science & Engineering, 2017,12(2):1-10.
    [32]
    ZHANG W T, HOU F, PENG Y Z, et al. Optimizing aeration rate in an external nitrification-denitrifying phosphorus removal (ENDPR) system for domestic wastewater treatment[J]. Chemical Engineering Journal, 2014,245:342-347.
    [33]
    ELNAKER N A, ELEKTOROWICZ M, NADDEO V, et al. Assessment of microbial community structure and function in serially passaged wastewater electro-bioreactor sludge:an approach to enhance sludge settleability[J]. Scientific Reports, 2018,8(1):7013.
    doi: 10.1038/s41598-018-25509-2 pmid: 29725134
    [34]
    GUGLIANDOLO C, LENTINI V, BUNK B, et al. Changes in prokaryotic community composition accompanying a pronounced temperature shift of a shallow marine thermal brine pool (Panarea Island,Italy)[J]. Extremophiles, 2015,19(3):547-559.
    pmid: 25716144
    [35]
    徐旻旸, 胡湛波, 张穗生, 等. 智能化曝气控制A/O工艺活性污泥特性演化对内源反硝化脱氮的作用机制[J]. 环境科学, 2018,39(4):1720-1730.

    XU M Y, HU Z B, ZHANG S S, et al. Mechanism of action of activated sludge properties in nitrogen removal by endogenous denitrification through an intelligent aeration-controlled A/O process[J]. Environmental Science, 2018,39(4):1720-1730.
    [36]
    QIN Y J, HAN B, CAO Y, et al. Impact of substrate concentration on anammox-UBF reactors start-up[J]. Bioresource Technology, 2017,239:422-429.
    [37]
    陈重军, 张海芹, 汪瑶琪, 等. 基于高通量测序的ABR厌氧氨氧化反应器各隔室细菌群落特征分析[J]. 环境科学, 2016,37(7):2652-2658.

    CHEN C J, ZHANG H Q, et al.WANG Y Q. Characteristics of microbial community in each compartment of ABR ANAMMOX reactor based on high-throughput sequencing[J]. Environmental Science, 2016,37(7):2652-2658.
    [38]
    牛凤霞, 吉芳英, 赵艮, 等. 龙景湖沉积物的细菌群落垂向分布特征[J]. 中国环境科学, 2017,37(6):2322-2331.

    NIU F X, JI F Y, ZHAO G, et al. Vertical distribution of bacterial communities in sediments of Longjing Lake[J]. China Environmental Science, 2017,37(6):2322-2331.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(692) PDF Downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return