Volume 11 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
ZHANG Ruibin, PAN Zhuoxi, XI Daoguo, ZHOU Nai, ZU Baiyu. Effect of aluminum sludge filler improved bioretention tank on runoff pollutant reduction[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 756-762. doi: 10.12153/j.issn.1674-991X.20200183
Citation: ZHANG Ruibin, PAN Zhuoxi, XI Daoguo, ZHOU Nai, ZU Baiyu. Effect of aluminum sludge filler improved bioretention tank on runoff pollutant reduction[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 756-762. doi: 10.12153/j.issn.1674-991X.20200183

Effect of aluminum sludge filler improved bioretention tank on runoff pollutant reduction

doi: 10.12153/j.issn.1674-991X.20200183
  • Received Date: 2020-07-27
  • Publish Date: 2021-07-20
  • In view of the poor effect of traditional filler bioretention tank on the reduction of nitrogen, phosphorus and other pollutants, the study on improving the bioretention tank with different proportions of aluminum sludge filler was carried out. The bioretention tanks with aluminum sludge and zeolite ratio of 3:2 (low ratio) and 4:1 (high ratio) were set up to study the permeability and removal effect of simulated rainwater with high, medium and low concentrations. The results showed that compared with the low proportion aluminum sludge filler bioretention tank, the high proportion aluminum sludge filler bioretention tank had stronger permeability, and with the growth of the operation cycle, its permeability decreased slowly. The high proportion aluminum sludge filler could improve the service life of the bioretention tank; by increasing the aluminum sludge filler ratio, it could significantly improve the removal efficiency of pollutants of high concentration rainwater. Especially, the removal rates of TP, COD, TN and NH3-N could reach 89.0%, 62.4%, 66.4% and 68.0%, respectively. There was no significant difference in the removal efficiency of low concentration rainwater pollutants by high or low aluminum sludge ratio.

     

  • loading
  • [1]
    乐文彩, 黄琦珊, 游成赟, 等. 南方红壤区生物滞留池的效果模拟和影响研究[J]. 环境工程, 2018, 36(11):23-28.

    LE W C, HUANG Q S, YOU C B, et al. Effect simulation and influence research of bioretention in red soil region of southern China[J]. Environmental Engineering, 2018, 36(11):23-28.
    [2]
    宫曼莉, 左俊杰, 任心欣, 等. 透水路面-生物滞留池组合道路的城市面源污染控制效果评估[J]. 环境科学, 2018, 39(9):4096-4104.

    GONG M L, ZUO J J, REN X X, et al. Evaluation of effect of urban non-point source pollution control on porous asphalt-bio-retention combined roads[J]. Environmental Science, 2018, 39(9):4096-4104.
    [3]
    熊家晴, 何一帆, 白雪琛, 等. 改良填料生物滞留池对雨水径流中磷的去除效果[J]. 环境工程学报, 2019, 13(9):2164-2172.

    XIONG J Q, HE Y F, BAI X C, et al. Removal effect of phosphorus in rain-runoff by the media-improved bioretention tank[J]. Chinese Journal of Environmental Engineering, 2019, 13(9):2164-2172.
    [4]
    田婧, 刘丹. 生物炭对生物滞留池水文效果的影响[J]. 西南交通大学学报, 2018, 53(2):420-426.

    TIAN J, LIU D. Effects of biochar on hydrologic performance of bioretention[J]. Journal of Southwest Jiaotong University, 2018, 53(2):420-426.
    [5]
    ZHAO Y Q. Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses[J]. Critical Reviews in Environmental Science & Technology, 2007, 37(2):129-164.
    [6]
    MAKRIS K C, HARRIS W G, O’CONNOR G A, et al. Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals[J]. Environmental Science & Technology, 2005, 39(11):4280-4289.
    doi: 10.1021/es0480769
    [7]
    卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016, 29(8):1187-1194.

    LU S Y, WAN Z F, LI F M, et al. Ammonia nitrogen adsorption and desorption characteristics of twenty-nine kinds of constructed wetland substrates[J]. Research of Environmental Sciences, 2016, 29(8):1187-1194.
    [8]
    周永超. 改良型生物滞留池对雨水径流中氮磷污染物去除效果研究[D]. 镇江:江苏大学, 2018
    [9]
    朱英杰, 杜晓丽, 于振亚, 等. 道路雨水径流溶解性有机物对生物滞留系统重金属截留过程的影响[J]. 环境化学, 2019, 38(1):55-62.

    ZHU Y J, DU X L, YU Z Y, et al. Influence of dissolved organic matter on heavy metals removal in road runoff in bioretention systems[J]. Environmental Chemistry, 2019, 38(1):55-62.
    [10]
    王建军, 李田, 张颖. 给水厂污泥改良生物滞留填料除磷效果的研究[J]. 环境科学, 2014, 35(12):4642-4647.

    WANG J J, LI T, ZAHNG Y. Water treatment residual as a bioretention media amendment for phosphorus removal[J]. Environmental Science, 2014, 35(12):4642-4647.
    [11]
    奚道国, 张瑞斌, 周乃, 等. 铝污泥复合填料特性及在人工湿地中的应用[J]. 环境工程技术学报, 2019, 9(5):552-558.

    XI D G, ZHANG R B, ZHOU N, et al. Characteristics of aluminum sludge composite filler and its applications in constructed wetlands[J]. Journal of Environmental Engineering Technology, 2019, 9(5):552-558.
    [12]
    李妍. 自来水厂污泥陶粒化作为人工湿地填料的研究[D]. 福州:福建师范大学, 2015.
    [13]
    李一兵, 呼瑞琪, 张彦平, 等. 给水厂含铝污泥对含磷废水的吸附特性研究[J]. 工业水处理, 2018, 38(5):30-34.

    LI Y B, HU R Q, ZHANG Y P, et al. Research on the adsorption capability of aluminum-containing sludge for the phosphorus-containing wastewater in waterworks[J]. Industrial Water Treatment, 2018, 38(5):30-34.
    [14]
    赵亚乾, 杨永哲, AKINTUNDE B, 等. 以给水厂铝污泥为基质的人工湿地研发概述[J]. 中国给水排水, 2015, 31(11):124-130.

    ZHAO Y Q, YANG Y Z, AKINTUNDE B, et al. Overview of development of alum sludge-based constructed wetland for wastewater treatment[J]. China Water and Wastewater, 2015, 31(11):124-130.
    [15]
    张瑞斌, 奚道国, 王乐阳, 等. A/O+铝污泥填料人工湿地组合工艺处理农村生活污水的效果[J]. 环境工程技术学报, 2019, 9(2):145-150.

    ZHANG R B, XI D G, WANG L Y, et al. Effect of A/O + aluminum sludge filled constructed wetland combined process on rural domestic sewage[J]. Journal of Environmental Engineering Technology, 2019, 9(2):145-150.
    [16]
    方伟成, 王静, 周新萍. 三种填料吸附磷的特性及其影响因素[J]. 湿地科学, 2018, 16(3):341-346.
    [17]
    杨飞凯. 生物滞留池过滤层配合比及其水文效应的试验与模拟[D]. 南京:东南大学, 2018.
    [18]
    钱锋, 宋永会, 孙杨, 等. 钙型天然斜发沸石同步脱氮除磷特性[J]. 环境科学研究, 2009, 22(9):1039-1043.

    QIAN F, SONG Y H, SUN Y, et al. Characteristics of ca-type clinoptilolite for simultaneous removal of nitrogen and phosphorus from wastewater[J]. Research of Environmental Sciences, 2009, 22(9):1039-1043.
    [19]
    赵发敏, 海热提, 韩晓丽. 人工湿地填料去除氨氮优化配比及影响因素研究[J]. 环境科学与技术, 2011, 34(9):26-30.

    ZHAO F M, HAI R T, HAN X L. Optimizing substrate gradation and effect factors for constructed wetland removal of ammonia nitrogen[J]. Environmental Science & Technology, 2011, 34(9):26-30.
    [20]
    潘仪凯, 张海江, 张旭伟, 等. 复杂型生物滞留设施的渗透性能试验研究[J]. 中国给水排水, 2018, 34(23):134-138.

    PAN Y K, ZHANG H J, ZHANG X W, et al. Permeability of complex bioretention system[J]. China Water & Wastewater, 2018, 34(23):134-138.
    [21]
    朋四海, 黄俊杰, 李田. 过滤型生物滞留池径流污染控制效果研究[J]. 给水排水, 2014, 50(6):38-42.
    [22]
    SEBASTIEN L C, FLETCHER T D, DELETIC A, et al. Hydraulic performance of biofilter systems for stormwater management:influences of design and operation[J]. Journal of Hydrology, 2009, 376(1/2):16-23.
    doi: 10.1016/j.jhydrol.2009.07.012
    [23]
    金相灿, 贺凯, 卢少勇, 等. 4种填料对氨氮的吸附效果[J]. 湖泊科学, 2008, 20(6):755-760.
    doi: 10.18307/2008.0613

    JIN X C, HE K, LU S Y, et al. Adsorption effect of ammonia by four fillings[J]. Journal of Lake Sciences, 2008, 20(6):755-760. doi: 10.18307/2008.0613
    [24]
    赵晓红, 赵亚乾, 王文科, 等. 人工湿地系统以铝污泥为基质的几个关键问题[J]. 中国给水排水, 2015(11):131-136.

    ZHAO X H, ZHAO Y Q, WANG W K, et al. Several key issues to consider in using alum sludge as substrate in constructed wetland[J]. China Water & Wastewater, 2015(11):131-136.
    [25]
    熊鑫, 柯凡, 李勇, 等. 过氧化钙对水中低浓度磷的去除性能[J]. 湖泊科学, 2015, 27(3):493-501.
    doi: 10.18307/2015.0317

    XIONG X, KE F, LI Y, et al. Low concentration of phosphorus removal in waters with CaO2 [J]. Journal of Lake Sciences, 2015, 27(3):493-501. doi: 10.18307/2015.0317
    [26]
    蒋豫, 刘新, 魏永军. 组合填料对氮磷的吸附性能研究[J]. 环境保护科学, 2018, 44(2):42-45.

    JIANG Y, LIU X, WEI Y J. Study of the characteristics of combination packing for removal of N and P[J]. Environmental Protection Science, 2018, 44(2):42-45.
    [27]
    张千, 刘向阳, 陈旺, 等. 新型除磷填料的制备及除磷吸附床运行参数的优化[J]. 化工学报, 2019, 70(3):1099-1110.

    ZHANG Q, LIU X Y, CHEN W, et al. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process[J]. CIESC Journal, 2019, 70(3):1099-1110.
    [28]
    孙未. 生物滞留池淹没区处理地表径流脱氮效果与微生物学机理[D]. 天津:天津大学, 2018.
    [29]
    徐鹏飞, 陈朴青, 简敏菲, 等. 不同人工湿地填料对氨氮的吸附特性分析[J]. 江西师范大学学报(自然科学版), 2012(2):209-212.
    [30]
    刘增超, 李家科, 蒋春博, 等. 4种生物滞留填料对径流污染净化效果对比[J]. 水资源保护, 2018, 34(4):71-79.

    LIU Z C, LI J K, JIANG C B, et al. Comparison of purification effects of 4 kinds of bioretention fillers on runoff pollutants[J]. Waste Resourses Protection, 2018, 34(4):71-79.
    [31]
    王功, 魏东洋, 方晓航, 等. 3种湿地填料对水体中氮磷的吸附特性研究[J]. 环境污染与防治, 2012, 34(11):9-13.

    WANG G, WEI D Y, FANG X H, et al. Study on the adsorption characteristics of nitrogen and phosphorus on three substrates of constructed wetland[J]. Environmental Pollution & Control, 2012, 34(11):9-13.
    [32]
    江子建, 陈秀荣, 赵建国. 沸石、钢渣组合填料对氨氮和磷的定量去除研究[J]. 环境科学与技术, 2016, 39(2):133-138.

    JIANG Z J, CHEN X R, ZHAO J G. Quantitative removal of ammonia nitrogen and phosphorus with compound of zeolite and steel slag[J]. Environmental Science & Technology, 2016, 39(2):133-138.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(498) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return