Volume 11 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
ZHANG Yuanyuan, GUO Shaojuan, WANG Feifei, YANG Lixin. Research progress on joint toxic effects and mechanisms of the mixture of TCDD and mercury, cadmium, lead, arsenic[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 332-342. doi: 10.12153/j.issn.1674-991X.20200217
Citation: ZHANG Yuanyuan, GUO Shaojuan, WANG Feifei, YANG Lixin. Research progress on joint toxic effects and mechanisms of the mixture of TCDD and mercury, cadmium, lead, arsenic[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 332-342. doi: 10.12153/j.issn.1674-991X.20200217

Research progress on joint toxic effects and mechanisms of the mixture of TCDD and mercury, cadmium, lead, arsenic

doi: 10.12153/j.issn.1674-991X.20200217
More Information
  • Corresponding author: YANG Lixin E-mail: yanglx@craes.org.cn
  • Received Date: 2020-09-01
  • Publish Date: 2021-03-20
  • Chemicals usually exist in the environment in the form of mixtures. Heavy metals and organic chemicals are two kinds of common pollutants in the environment, and their toxic effects have been concerned for a long time. Considering the complexity of toxic effects of chemicals mixtures and the limitation of risk assessment methods, most of the existing studies focus mainly on the toxic effects of single chemicals or a group of chemicals, but few on the joint toxic effects of different types of chemical pollutants. A number of studies related to environmental sources, concentrations, single and joint toxic effects and molecular mechanisms of 2,3,7,8-tetrachlorodibenzo-dioxins (TCDD), mercury, cadmium, lead and arsenic were analyzed and summarized systematically. Combined with a transcriptome analysis of single and mixed induced expression genes, a quantitative study of gene expression level, and the application prospect of metabolomics and exposure omics and other technologies in the study of joint toxic effects and mechanisms, a method based on specific gene expression level was proposed to study and assess the joint toxic effects.

     

  • loading
  • [1]
    CASALSCASAS C, DESVERGNE B. Endocrine disruptors:from endocrine to metabolic disruption[J]. Annual Review of Physiology, 2011,73(1):135-162.
    [2]
    HAYS S M, AYLWARD L L. Dioxin risks in perspective:past,present,and future[J]. Regulatory Toxicology and Pharmacology, 2003,37(2):202-217.
    [3]
    黄楚琴, 蔡文泳, 刘寒英, 等. 基于酵母报道基因系统检测珠江三角洲水域二英污染物的分布蓄积特征[J]. 应用与环境生物学报, 2014,20(4):690-696.

    HUANG C Q, CAI W Y, LIU H Y, et al. Investigating distribution and accumulation of dioxin-like pollutants with yeast genetic reporter system in rivers of the Pearl River Delta[J]. Chinese Journal of Applied & Environmental Biology, 2014,20(4):690-696.
    [4]
    PIRKLE J L, WOLFE W H, PATTERSON D G, et al. Estimates of the half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Vietnam veterans of Operation Ranch Hand[J]. Journal of Toxicology Environmental Health, 1989,27(2):165-171.
    pmid: 2733058
    [5]
    WOLFE W H, MICHALEK J E, MINER J C, et al. Determinants of TCDD half-life in veterans of operation ranch hand[J]. Journal of Toxicology Environmental Health, 1994,41(4):481-488.
    doi: 10.1080/15287399409531858 pmid: 8145287
    [6]
    PERELLÓ G, GÓMEZ-CATALÁN J, CASTELL V, et al. Assessment of the temporal trend of the dietary exposure to PCDD/Fs and PCBs in Catalonia,over Spain:health risks[J]. Food and Chemical Toxicology, 2012,50(2):399-408.
    pmid: 21763388
    [7]
    QIU G, FENG X, WANG S, et al. Environmental contamination of mercury from Hg-mining areas in Wuchuan,Northeastern Guizhou,China[J]. Environmental Pollution, 2006,142(3):549-558.
    pmid: 16310915
    [8]
    JIANG G B, SHI J B, FENG X B. Mercury pollution in China[J]. Environmental Science & Technology, 2006,40(12):3672-3678.
    [9]
    曾晨, 郭少娟, 杨立新. 汞、镉、铅、砷单一和混合暴露的毒性效应及机理研究进展[J]. 环境工程技术学报, 2018,8(2):221-230.

    ZENG C, GUO S J, YANG L X. Toxic effects and mechanism of exposure to single and mixture of mecury,cadmium,lead and arssenic[J]. Journal of Environmental Engineering Technology, 2018,8(2):221-230.
    [10]
    YANG L, ZHANG Y, WANG F, et al. Toxicity of mercury:molecular evidence[J]. Chemosphere, 2020,245:125586.
    pmid: 31881386
    [11]
    FU X, ZHANG H, YU B, et al. Observations of atmospheric mercury in China:a critical review[J]. Atmospheric Chemistry and Physics, 2015,15(16):9455-9476.
    [12]
    LINDBERG S E, BULLOCK R, EBINGHAUS R, et al. Asynjournal of progress and uncertainties in attributing the sources of mercury in deposition[J]. AMBIO:a Journal of the Human Environment, 2007,36(1):19-33.
    [13]
    EVERS D C, BURGESS N M, CHAMPOUX L, et al. Patterns and interpretation of mercury exposure in freshwater avian communities in Northeastern North America[J]. Ecotoxicology, 2005,14(1):193-221.
    [14]
    HALL B D, BODALY R A, FUDGE R J P, et al. Food as the dominant pathway of methylmercury uptake by fish[J]. Water Air & Soil Pollution, 1997,100(1):13-24.
    [15]
    TSUI M T K, WANG W. Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna[J]. Environmental Science & Technology, 2004,38(3):808-816.
    [16]
    STAHL L L, SNYDER B D, OLSEN A R, et al. Contaminants in fish tissue from US lakes and reservoirs:a national probabilistic study[J]. Environmental Monitoring and Assessment, 2009,150(1):3-19.
    [17]
    HANNA D E L, SOLOMON C T, POSTE A E, et al. A review of mercury concentrations in freshwater fishes of Africa:patterns and predictors[J]. Environmental Toxicology and Chemistry, 2015,34(2):215-223.
    doi: 10.1002/etc.2818 pmid: 25470784
    [18]
    ZHOU L, HONG S, LI W, et al. Epidemiological study on metal pollution of Ningbo in China[J]. International Journal of Environmental Research & Public Health, 2018,15(3):424.
    [19]
    ZHAO Y, FANG X, MU Y, et al. Metal pollution(Cd,Pb,Zn,and As) in agricultural soils and soybean,glycine max,in Southern China[J]. Bulletin of Environmental Contamination and Toxicology, 2014,92(4):427-432.
    [20]
    JOMOVA K, VALKO M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011,283(2):65-87.
    [21]
    高炜, 支国瑞, 薛志钢, 等. 1980—2007年我国燃煤大气汞、铅、砷排放趋势分析[J]. 环境科学研究, 2013,26(8):822-828.

    GAO W, ZHI G R, XUE Z G, et al. Analysis of atmospheric emission trends of mercury,lead and arsenic from coal combustion in China from 1980-2007[J]. Research of Environmental Sciences, 2013,26(8):822-828.
    [22]
    田金红, 杨洁. 铅的工业污染及防治[J]. 绿色科技, 2016(10):104-107.

    TIAN J H, YANG J. Industrial pollution and prevention of lead[J]. Journal of Green Science and Technology, 2016(10):104-107.
    [23]
    ELNEKEETY A A, ELKADY A A, SOLIMAN M S, et al. Protective effect of Aquilegia vulgaris(L.) against lead acetate-induced oxidative stress in rats[J]. Food and Chemical Toxicology, 2009,47(9):2209-2215.
    pmid: 19531368
    [24]
    JIN Y, LIU P, SUN J, et al. Dietary exposure and risk assessment to lead of the population of Jiangsu Province,China[J]. Food Additives and Contaminants Part A:Chemistry Analysis Control Exposure & Risk Assessment, 2014,31(7):1187-1195.
    [25]
    李子成, 邓义祥, 郑丙辉. 中国湖库水环境质量现状调查分析[J]. 环境科学与技术, 2012,35:201-205.

    LI Z C, DENG Y X, ZHENG B H. Status quo of aquatic environmental quality of China’s lakes and reservoirs:investigation and analysis[J]. Environmental Science & Technology, 2012,35(10):201-205.
    [26]
    包稚群, 丘克强. 关于我国砷污染现状与治理砷建议[J]. 云南冶金, 2019,48:60-64.
    [27]
    FIORITO F, SANTAMARIA R, IRACE C, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin and the viral infection[J]. Environmental Research, 2017,153:27-34.
    doi: 10.1016/j.envres.2016.11.004 pmid: 27883971
    [28]
    SORG O, ZENNEGG M, SCHMID P, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) poisoning in Victor Yushchenko:identification and measurement of TCDD metabolites[J]. The Lancet, 2009,374:1179-1185.
    [29]
    PELCLOVÁ D, URBAN P, PREISS J, et al. Adverse health effects in humans exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD)[J]. Reviews on Environmental Health, 2006,21(2):119-138.
    doi: 10.1515/reveh.2006.21.2.119 pmid: 16898675
    [30]
    BERTAZZI P A, BERNUCCI I, BRAMBILLA G, et al. The Seveso studies on early and long-term effects of dioxin exposure:a review[J]. Environmental Health Perspectives, 1998,106:625-633.
    pmid: 9599710
    [31]
    NIJOUKUBO D, ADACHI H, KITAZAWA T, et al. Blood vessels are primary targets for 2,3,7,8-tetrachlorodibenzo-p-dioxin in pre-cardiac edema formation in larval zebrafish[J]. Chemosphere, 2020,254:126808.
    doi: 10.1016/j.chemosphere.2020.126808
    [32]
    MIYAZAKI W, FUJIWARA Y, KATOH T. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the development and function of the blood-brain barrier[J]. Neuro Toxicology, 2016,52:64-71.
    [33]
    谭雪梅, 张秀丽, 余凯伦, 等. TCDD宫内暴露致雄性子代大鼠生殖毒性研究[J]. 重庆医科大学学报, 2019,44(8):997-1002.

    TAN X M, ZHANG X L, YU K L, et al. Reproductive toxicity of intrauterine exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in male offspring rats[J]. Journal of Chongqing Medical University, 2019,44(8):997-1002.
    [34]
    NISHIJO M, KURIWAKI J I, HORI E, et al. Effects of maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal brain growth and motor and behavioral development in offspring rats[J]. Toxicology Letters, 2007,173(1):41-47.
    doi: 10.1016/j.toxlet.2007.06.007 pmid: 17669605
    [35]
    BAROUKI R, COUMOUL X, FERNANDEZ-SALGUERO P M.The aryl hydrocarbon receptor,more than a xenobiotic-interacting protein[J]. FEDS Letters, 2007,581(19):3608-3615.
    [36]
    HOFFMAN E, REYES H, CHU F, et al. Cloning of a factor required for activity of the Ah(dioxin) receptor[J]. Science 1991,252:954-958.
    pmid: 1852076
    [37]
    OKINO S T, WHITLOCK J P. The aromatic hydrocarbon receptor,transcription,and endocrine aspects of dioxin action[M]. Pittsburgh: Academic Press, 2000:241-264.
    [38]
    BOCK K W. From TCDD-mediated toxicity to searches of physiologic AhR functions[J]. Biochemical Pharmacology, 2018,155:419-424.
    [39]
    MIMURA J, FUJII-KURIYAMA Y. Functional role of AhR in the expression of toxic effects by TCDD[J]. Biochimica et Biophysica Acta(BBA):General Subjects, 2003,1619(3):263-268.
    [40]
    PUGA A, BARNES S J, DALTON T P, et al. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest[J]. Journal of Biological Chemistry, 2000,275(4):2943-2950.
    [41]
    MANDAL P K. Dioxin:a review of its environmental effects and its aryl hydrocarbon receptor biology[J]. Journal of Comparative Physiology B, 2005,175(4):221-230.
    [42]
    WALISSER J A, GLOVER E, PANDE K, et al. Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(49):17858-17863.
    pmid: 16301529
    [43]
    YUEH M F, HUANG Y H, HILLER A, et al. Involvement of the xenobiotic response element(XRE) in Ah receptor-mediated induction of human UDP-glucuronosyltransferase 1A1[J]. Journal of Biological Chemistry, 2003,278(17):15001-15006.
    [44]
    VILUKSELA M, BAGER Y, TUOMISTO J T, et al. Liver tumor-promoting activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) in TCDD-sensitive and TCDD-resistant rat strains[J]. Cancer Research, 2000,60(24):6911-6920.
    [45]
    李瑞阳, 徐晓航, 许志东, 等. 贵州某典型汞矿区流域水稻中总汞和甲基汞含量及暴露风险[J]. 环境科学研究, 2016,29(12):1829-1839.

    LI R Y, XU X H, XU Z D, et al. Total mercury and methylmercury concentrations and risk assessments in rice plants collected from a river watershed in a typical mercury mining area of Guizhou[J]. Research of Environmental Sciences, 2016,29(12):1829-1839.
    [46]
    CLARKSON T W. The toxicology of mercury[J]. Critical Reviewsin Clinical Laboratory Sciences, 1997,34(4):369-403.
    [47]
    TSUTSUMI T, ISHIHARA A, YAMAMOTO A, et al. The potential protective role of lysophospholipid mediators in nephrotoxicity induced by chronically exposed cadmium[J]. Food and Chemical Toxicology, 2014,65:52-62.
    pmid: 24361405
    [48]
    CHARGUI A, ZEKRI S, JACQUILLET G, et al. Cadmium-induced autophagy in rat kidney:an early biomarker of subtoxic exposure[J]. Toxicological Sciences, 2011,121(1):31-42.
    doi: 10.1093/toxsci/kfr031 pmid: 21325019
    [49]
    CHEN J, CHEN Y, LIU W, et al. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish[J]. Neurotoxicology and Teratology, 2012,34(6):581-586.
    pmid: 22975620
    [50]
    LUO W, VERWEIJ R A, van GESTEL C A M. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods[J]. Environmental Pollution, 2014,185:1-9.
    [51]
    CHEN Y, PARVEZ F, GAMBLE M, et al. Arsenic exposure at low-to-moderate levels and skin lesions,arsenic metabolism,neurological functions,and biomarkers for respiratory and cardiovascular diseases:review of recent findings from the health effects of arsenic longitudinal study(HEALS) in Bangladesh[J]. Toxicology Applied Pharmacology, 2009,239(2):184-192.
    pmid: 19371619
    [52]
    RAMSEY K A, FOONG R E, SLY P D, et al. Early life arsenic exposure and acute and long-term responses to influenza a infection in mice[J]. Environmental Health Perspectives, 2013,121(10):1187-1193.
    [53]
    LU K, ABO R, SCHLIEPER K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice:an integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives, 2014,122(3):284-291.
    [54]
    GAUTHIER P T, NORWOOD W P, PREPAS E E, et al. Metal-PAH mixtures in the aquatic environment:a review of co-toxic mechanisms leading to more-than-additive outcomes[J]. Aquatic Toxicology, 2014,154:253-269.
    doi: 10.1016/j.aquatox.2014.05.026 pmid: 24929353
    [55]
    VALKO M, JOMOVA K, RHODES C J, et al. Redox-and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Archives of Toxicology, 2016,90(1):1-37.
    doi: 10.1007/s00204-015-1579-5 pmid: 26343967
    [56]
    SHARMA B, SINGH S, SIDDIQI N J. Biomedical implications of heavy metals induced imbalances in redox systems[J]. BioMed Research International, 2014,2014:640754.
    doi: 10.1155/2014/640754 pmid: 25184144
    [57]
    VALKO M, MORRIS H, CRONIN M T D. Metals,toxicity and oxidative stress[J]. Current Medicinal Chemistry, 2005,12(10):1161-1208.
    pmid: 15892631
    [58]
    JAISHANKAR M, TSETEN T, ANBALAGAN N, et al. Toxicity,mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014,7(2):60-72.
    doi: 10.2478/intox-2014-0009 pmid: 26109881
    [59]
    FLORA S J, MITTAL M, MEHTA A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy[J]. Indian Journal of Medical Research, 2008,128(4):501.
    [60]
    郭少娟, 张元元, 王菲菲, 等. 大气颗粒物对斑马鱼胚胎的毒性及机制研究进展[J]. 环境工程技术学报, 2020,10(3):338-345.

    GUO S J, ZHANG Y Y, WANG F F, et al. A review of toxicity and mechanism of atmospheric particulate matter on zebrafish embryos[J]. Journal of Environmental Engineering Technology, 2020,10(3):338-345.
    [61]
    SANABRIA M, CUCIELO M S, GUERRA M T, et al. Sperm quality and fertility in rats after prenatal exposure to low doses of TCDD:a three-generation study[J]. Reproductive Toxicology, 2016,65:29-38.
    doi: 10.1016/j.reprotox.2016.06.019 pmid: 27352640
    [62]
    BRULPORT A, LE-CORRE L, CHAGNON M C. Chronic exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) induces an obesogenic effect in C57BL/6J mice fed a high fat diet[J]. Toxicology, 2017,390:43-52.
    pmid: 28774668
    [63]
    刘蔓蔓, 陶宇昌, 刘小转, 等. TCDD对小鼠腭突间充质细胞增殖和凋亡的影响[J]. 郑州大学学报(医学版), 2019,54(4):504-508.

    LIU M M, TAO Y C, LIU X Z, et al. Effects of 2,3,7,8-tetrachlorodibenzo-p-doxin on proliferation and apoptosis of mouse embryonic palatal mesenchymal cells[J]. Journal of Zhengzhou University(Medical Sciences), 2019,54(4):504-508.
    [64]
    ZHOU F, DU G, XIE J, et al. RyRs mediate lead-induced neurodegenerative disorders through calcium signaling pathways[J]. Science of the Total Environment, 2020,701:134901.
    [65]
    ZHANG Y, ZHOU L, LI S, et al. Impacts of lead exposure and chelation therapy on bone metabolism during different developmental stages of rats[J]. Ecotoxicology and Environmental Safety, 2019,183:109441.
    pmid: 31404725
    [66]
    MANI M S, JOSHI M B, SHETTY R R, et al. Lead exposure induces metabolic reprogramming in rat models[J]. Toxicology Letters, 2020.doi: 10.1016/j.toxlet.2020.09.010.
    doi: 10.1016/j.toxlet.2021.02.006 pmid: 33581290
    [67]
    LUO T, SHEN M, ZHOU J, et al. Chronic exposure to low doses of Pb induces hepatotoxicity at the physiological,biochemical,and transcriptomic levels of mice[J]. Environmental Toxicology, 2019,34(4):521-529.
    doi: 10.1002/tox.22706 pmid: 30623991
    [68]
    BI M, ZHANG H, YUAN L, et al. Molecular mechanisms of lead-induced changes of selenium status in mice livers through interacting with selenoprotein P[J]. Ecotoxicology and Environmental Safety, 2019,175:282-288.
    doi: 10.1016/j.ecoenv.2019.03.059 pmid: 30921565
    [69]
    FLORA G, GUPTA D, TIWARI A. Toxicity of lead:a review with recent updates[J]. Interdisciplinary Toxicology, 2012,5(2):47-58.
    doi: 10.2478/v10102-012-0009-2 pmid: 23118587
    [70]
    PRUSSUSTUN A, VICKERS C, HAEFLIGER P, et al. Knowns and unknowns on burden of disease due to chemicals:a systematic review[J]. Environmental Health, 2011,10(1):9.
    [71]
    FUJIMURA M, CHENG J, ZHAO W. Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats[J]. Brain Research, 2012,1464:1-7.
    doi: 10.1016/j.brainres.2012.05.012 pmid: 22587888
    [72]
    QIN L, LIU S, ZHANG J, et al. A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture[J]. Toxicology, 2011,280(3):164-172.
    doi: 10.1016/j.tox.2010.12.007 pmid: 21182889
    [73]
    QU R, WANG X, FENG M, et al. The toxicity of cadmium to three aquatic organisms(Photobacterium phosphoreum,Daphnia magna and Carassius auratus) under different pH levels[J]. Ecotoxicology and Environmental Safety, 2013,95:83-90.
    doi: 10.1016/j.ecoenv.2013.05.020 pmid: 23769002
    [74]
    HAN J, LIU K, WANG R, et al. Exposure to cadmium causes inhibition of otolith development and behavioral impairment in zebrafish larvae[J]. Aquatic Toxicology, 2019,214:105236.
    doi: 10.1016/j.aquatox.2019.105236 pmid: 31260825
    [75]
    PALMA-LARA I, MARTÍNEZ-CASTILLO M, QUINTANA-PÉREZ J C, et al. Arsenic exposure:a public health problem leading to several cancers[J]. Regulatory Toxicology and Pharmacology, 2020,110:104539.
    doi: 10.1016/j.yrtph.2019.104539 pmid: 31765675
    [76]
    RASHID K, SINHA K, SIL P C. An update on oxidative stress-mediated organ pathophysiology[J]. Food and Chemical Toxicology, 2013,62:584-600.
    doi: 10.1016/j.fct.2013.09.026 pmid: 24084033
    [77]
    KANN S, HUANG M, ESTES C, et al. Arsenite-induced aryl hydrocarbon receptor nuclear translocation results in additive induction of phase I genes and synergistic induction of phase II genes[J]. Molecular Pharmacology, 2005,68(2):336-346.
    doi: 10.1124/mol.105.011841 pmid: 15894712
    [78]
    KORASHY H M, EL-KADI A O S.Differential effects of mercury,lead and copper on the constitutive and inducible expression of aryl hydrocarbon receptor(AhR):regulated genes in cultured hepatoma Hepa 1c1c7 cells[J]. Toxicology, 2004,201(1/2/3):153-172.
    [79]
    MAIER A, DALTON T P, PUGA A. Disruption of dioxin-inducible phase I and phase II gene expression patterns by cadmium,chromium,and arsenic[J]. Molecular Carcinogenesis, 2000,28(4):225-235.
    pmid: 10972992
    [80]
    AMARA I E A, ANWAR-MOHAMED A, EL-KADI A O S. Mercury modulates the CYP1A1 at transcriptional and posttranslational levels in human hepatoma HepG2 cells[J]. Toxicology Letters, 2010,199(3):225-233.
    doi: 10.1016/j.toxlet.2010.09.003 pmid: 20837117
    [81]
    AMARA I E A, ANWAR-MOHAMED A, ABDELHAMID G, et al. Effect of mercury on aryl hydrocarbon receptor-regulated genes in the extrahepatic tissues of C57BL/6 mice[J]. Food Chemical Toxicology, 2012,50(7):2325-2334.
    pmid: 22579925
    [82]
    KORASHY H M, EL-KADI A O S. Modulation of TCDD-mediated induction of cytochrome P450 1A1 by mercury,lead,and copper in human HepG2 cell line[J]. Toxicology in Vitro, 2008,22(1):1-158.
    pmid: 17761398
    [83]
    AMARA I E A, EL-KADI A O S. Transcriptional modulation of the NAD(P)H:quinone oxidoreductase 1 by mercury in human hepatoma HepG2 cells[J]. Free Radical Biology and Medicine, 2011,51(9):1675-1685.
    doi: 10.1016/j.freeradbiomed.2011.07.021 pmid: 21843634
    [84]
    JAGANNATHAN L, JOSE C C, TANWAR V S, et al. Identification of a unique gene expression signature in mercury and 2,3,7,8-tetrachlorodibenzo-p-dioxin co-exposed cells[J]. Toxicology Research, 2017,6(3):312-323.
    doi: 10.1039/C6TX00432F pmid: 29057067
    [85]
    CHEN Y Y, CHAN K M. Transcriptional inhibition of TCDD-mediated induction of cytochrome P450 1A1 and alteration of protein expression in a zebrafish hepatic cell line following the administration of TCDD and Cd2+[J]. Toxicology Letters, 2018,282:121-135.
    doi: 10.1016/j.toxlet.2017.10.017 pmid: 29107029
    [86]
    KORASHY H M, ELKADI A O S. Transcriptional and posttranslational mechanisms modulating the expression of the cytochrome P450 1A1 gene by lead in HepG2 cells:a role of heme oxygenase[J]. Toxicology, 2012,291(1):113-121.
    doi: 10.1016/j.tox.2011.11.006
    [87]
    RAMADOSS P, PERDEW G H. The transactivation domain of the Ah receptor is a key determinant of cellular localization and ligand-independent nucleocytoplasmic shuttling properties[J]. Biochemistry, 2005,44(33):11148-11159.
    doi: 10.1021/bi050948b pmid: 16101299
    [88]
    CHEN Y Y, CHAN K M. Differential effects of metal ions on TCDD-induced cytotoxicity and cytochrome P4501A1 gene expression in a zebrafish liver(ZFL) cell-linet[J]. Metallomics Integrated Biometal Science, 2016.doi: 10.1039/c5mt00219b.
    doi: 10.1093/mtomcs/mfaa001 pmid: 33570135
    [89]
    LU C, WANG Y, SHENG Z, et al. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats[J]. Toxicology and Applied Pharmacology, 2010,248(3):178-184.
    doi: 10.1016/j.taap.2010.07.020 pmid: 20691717
    [90]
    KUSAKABE T, NAKAJIMA K, NAKAZATO K, et al. Changes of heavy metal,metallothionein and heat shock proteins in Sertoli cells induced by cadmium exposure[J]. Toxicology in Vitro, 2008,22(6):1469-1475.
    doi: 10.1016/j.tiv.2008.04.021 pmid: 18556172
    [91]
    HAN S G, CASTRANOVA V, VALLYATHAN V. Heat shock protein 70 as an indicator of early lung injury caused by exposure to arsenic[J]. Molecular and Cellular Biochemistry, 2005,277:153-164.
    doi: 10.1007/s11010-005-5874-y
    [92]
    HASSOUN E A, LI F, ABUSHABAN A, et al. Production of superoxide anion,lipid peroxidation and DNA damage in the hepatic and brain tissues of rats after subchronic exposure to mixtures of TCDD and its congeners[J]. Journal of Applied Toxicology, 2001,21(3):211-219.
    doi: 10.1002/jat.744 pmid: 11404832
    [93]
    COHEN H J, TAPE E H, NOVAK J, et al. The role of glutathione reductase in maintaining human granulocyte function andsensitivity to exogenous H2O2[J]. Blood, 1987,69(2):493-500.
    pmid: 3801665
    [94]
    KORASHY H M, ELKADI A O S. Regulatory mechanisms modulating the expression of cytochrome P450 1A1 gene by heavy metals[J]. Toxicological Sciences, 2005,88(1):39-51.
    doi: 10.1093/toxsci/kfi282 pmid: 16093525
    [95]
    ANWARMOHAMED A, ELKADI A O S. Arsenite down-regulates cytochrome P450 1A1 at the transcriptional and posttranslational levels in human HepG2 cells[J]. Free Radical Biology and Medicine, 2010,48(10):1399-1409.
    doi: 10.1016/j.freeradbiomed.2010.02.027 pmid: 20188822
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(505) PDF Downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return