ZHANG Jingqiao, LUO Datong, WANG Shaobo, WANG Han, HU Wenzheng, LI Hui, LIU Ruize, WANG Shulan. Pollution characteristics and source analysis of water-soluble ions in PM2.5 during autumn in Liaocheng City[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 617-623. DOI: 10.12153/j.issn.1674-991X.20200228
Citation: ZHANG Jingqiao, LUO Datong, WANG Shaobo, WANG Han, HU Wenzheng, LI Hui, LIU Ruize, WANG Shulan. Pollution characteristics and source analysis of water-soluble ions in PM2.5 during autumn in Liaocheng City[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 617-623. DOI: 10.12153/j.issn.1674-991X.20200228

Pollution characteristics and source analysis of water-soluble ions in PM2.5 during autumn in Liaocheng City

  • PM2.5 samples were collected during autumn in Liaocheng City from October 15th to November 14th, 2017, and the water-soluble ions (Na+, NH 4 + , K+, Mg2+, Ca2+, F-, Cl-, NO 3 - and SO 4 2 - ) were analyzed to study the pollution characteristics of PM2.5 in autumn in Liaocheng City. The results showed that PM2.5 mean concentration was (104.9±50.5) μg/m3 during the observation period, 0.40 times higher than the daily average concentration limit of Grade Ⅱ standard of Ambient Air Quality Standards (GB 3095-2012). The average concentration of water-soluble ions was (52.2±35.1) μg/m3, which accounted for 45.7%±11.3% of PM2.5. SO 4 2 - , NO 3 - and NH 4 + were the main ions, accounting for 85.2% of the water-soluble ions and 45.0% of PM2.5. As the air pollution got serious, the concentrations of water-soluble ions increased. In addition, the proportion of NH 4 + increased gradually, that of SO 4 2 - , No 3 - increased first but then decreased, while that of other ions especially Ca2+decreased, which indicated that the increase of PM2.5 concentration was mainly affected by the secondary inorganic transformation. The average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) during the observation period were 0.28 and 0.27, respectively, which showed that the secondary transformation of SO2 and NO2 was higher in autumn and the secondary pollution was much serious. In addition, SOR and NOR were positively correlated with temperature and relative humidity, and SOR was more sensitive to relative humidity, but NOR to temperature. PM2.5 in Liaocheng City presented weak alkaline in autumn, and NH 4 + were primarily in NH4NO3 and (NH4)2SO4 forms. The results of the principal component analysis revealed that secondary inorganic transformation, dust sources and industry emissions were the main sources of water-soluble ions of PM2.5 during autumn in Liaocheng City.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return