WANG Li, ZHANG Tengfei, YANG Sucai, LIU Zhihao, GOU Yaling, ZHAO Qianyun, SUN Zhongping, QIAO Pengwei. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 720-726. DOI: 10.12153/j.issn.1674-991X.20200251
Citation: WANG Li, ZHANG Tengfei, YANG Sucai, LIU Zhihao, GOU Yaling, ZHAO Qianyun, SUN Zhongping, QIAO Pengwei. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 720-726. DOI: 10.12153/j.issn.1674-991X.20200251

Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant

  • Soil microorganism plays an important role in the degradation of polycyclic aromatic hydrocarbons (PAHs). Taking the soil of a coking plant in North China as the research object, 30 soil samples were collected at 5 sampling sites (each site was divided into 6 layers). Soil environmental factors (physical and chemical properties and PAHs concentration), microbial abundance and community structure were analyzed, and the relationship between soil microbial composition and soil environmental factors was discussed. The results showed that the abundance of bacteria in soil ranged from 5.33 to 8.89, which was significantly negatively correlated with soil depth (P<0.01), and positively correlated with soil PAHs, organic carbon and total nitrogen concentrations (P<0.05). The dominant bacteria group (phyla) in the soil was Proteobacteria, whose relative abundance accounted for up to 90%, followed by Chloroflexi, Actinobacteria, Firmicutes and Acidobacteria, which accounted for 64%-97% of the bacteria in the level classification of phyla. Redundancy analysis of bacteria groups and environmental factors showed that the soil bacterial community structure in the coking plant was the result of the combination of PAHs pollution and environmental factors. Soil pH, available potassium, PAHs and total nitrogen content had the most obvious effects on soil bacterial community composition. Abundance of Proteobacteria (a potential PAHs degrading bacterium) was positively correlated with PAHs, total nitrogen, available phosphorus, available potassium and organic carbon content.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return