Volume 11 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
Liping GUO, Meng WANG, Heting WANG. Ground geotemperature characteristics of fog and haze days and the possible effects of seismic activities in Langfang City[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 837-844. doi: 10.12153/j.issn.1674-991X.20200255
Citation: Liping GUO, Meng WANG, Heting WANG. Ground geotemperature characteristics of fog and haze days and the possible effects of seismic activities in Langfang City[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 837-844. doi: 10.12153/j.issn.1674-991X.20200255

Ground geotemperature characteristics of fog and haze days and the possible effects of seismic activities in Langfang City

doi: 10.12153/j.issn.1674-991X.20200255
  • Received Date: 2020-10-25
  • Publish Date: 2021-09-20
  • According to the meteorological observation data about fog, haze, shallow geotemperature, wind direction, wind speed and relative humidity and seismic data of magnitude Ms2.0 or above in Langfang City from 2009 to 2018, the deep analysis was carried out on the characteristics of shallow geotemperature of fog and haze days, and the effects of seismic activities by Yamamoto statistical analysis and mathematical statistics. The results showed that: 1)The occurrence and distribution of fog and haze in Langfang City had both similarities and differences. The distribution of fog fluctuated in a single peak, with peak value in December, while that of haze was bimodal, with peak value in July and January, and July had the biggest value. 2)The distribution and formation of fog and haze were greatly connected with high shallow geotemperature. Once the fog and haze were highly severe at the same time, the characteristics of high geotemperature would be very significant. The average proportion of positive anomalies in geotemperature of 0, 10, 20 and 40 cm under the ground reached over 70%, and the surface temperature was above 80%. 3)There were differences in daily geotemperature characteristics on fog, haze days and their mixture days. The average proportion of positive anomalies in daily geotemperature of mixture of fog and haze was the highest, and the geothermal layers were relatively thick. There was a continuously increase in geotemperature before the formation of haze. And the average proportion of positive anomalies in geotemperature on fog days was higher than that on haze days. 4)The geotemperature was relatively high before and after the earthquake. The more seismicity, the more persistent the characteristic of relatively high geotemperature. The seismicity in 50 km of Langfang City was related to the increase of geotemperature, fog, haze and abnormal distribution of them. The increase of geotemperature caused by seismicity provided beneficial conditions for the formation of fog and haze, and also provided certain basic thermodynamic conditions for the formation of weathers including rainfall and snowfall. The rainfall and snowfall could lead to the decrease of geotemperature for some time.

     

  • loading
  • [1]
    刘小宁, 张洪政, 李庆祥, 等. 我国大雾的气候特征及变化初步解释[J]. 应用气象学报, 2005, 16(2):220-230.

    LIU X N, ZHANG H Z, LI Q X, et al. Preliminary research on the climatic characteristics and change of fog in China[J]. Quarterly Journal of Applied Meteorology, 2005, 16(2):220-230.
    [2]
    周月华, 王海军, 吴义城. 增暖背景下武汉地区雾的变化特征[J]. 气象科技, 2005, 33(6):509-512.
    [3]
    李法然, 周之栩, 陈卫锋, 等. 湖州市大雾天气的成因分析及预报研究[J]. 应用气象学报, 2005, 16(6):794-803.

    LI F R, ZHOU Z X, CHEN W F, et al. The physical mechanisms analysis and forecast research about the heavy fog in Huzhou[J]. Quarterly Journal of Applied Meteorology, 2005, 16(6):794-803.
    [4]
    景学义, 张雪梅, 兰博文. 哈尔滨市区雾的特征分析及预报指标研究[J]. 自然灾害学报, 2005, 14(2):47-49.

    JING X Y, ZHANG X M, LAN B W. Characteristic analysis and prediction index study of fog in urban area of Harbin City[J]. Journal of Natural Disasters, 2005, 14(2):47-49.
    [5]
    顾清源, 徐会明, 陈朝平, 等. 四川盆地大雾成因剖析[J]. 气象科技, 2006, 34(2):162-165.

    GU Q Y, XU H M, CHEN C P, et al. Causes of heavy fog in Sichuan basin[J]. Meteorological Science and Technology, 2006, 34(2):162-165.
    [6]
    黄庚, 关立友, 苏正军. 液氮消冷雾微结构的演变分析[J]. 气象, 2006, 32(3):27-31.

    HUANG G, GUAN L Y, SU Z J. Microstructure characteristics of cold fog before and after artificial seeding LN[J]. Meteorological, 2006, 32(3):27-31.
    [7]
    周小刚, 王强. 北京城市重烟尘雾与水雾过程的边界层结构[J]. 气象科技, 2004, 32(6):404-409.

    ZHOU X G, WANG Q. Boundary layer characteristics of urban heavy smog and fog in Beijing[J]. Meteorological Science and Technology, 2004, 32(6):404-409.
    [8]
    江玉华, 王强, 王正兴, 等. 一次平流辐射雾的边界层特征及雾水离子组分研究[J]. 气象, 2009, 35(2):19-28.

    JIANG Y H, WANG Q, WANG Z X, et al. On the atmospheric boundary layer character of an advection-radiation fog process and the ionic species concentration of fog water[J]. Meteorological Monthly, 2009, 35(2):19-28.
    [9]
    周红妹, 葛伟强, 柏桦, 等. 气象卫星大雾遥感自动识别技术研究[J]. 热带气象学报, 2011, 27(2):152-160.

    ZHOU H M, GE W Q, BAI H, et al. Research on automatic fog identification technology by meteorological satellite remote sensing[J]. Journal of Tropical Meteorology, 2011, 27(2):152-160.
    [10]
    吴兑. 近十年中国灰霾天气研究综述[J]. 环境科学学报, 2012, 32(2):257-269.

    WU D. Hazy weather research in China in the last decade:a review[J]. Acta Scientiae Circumstantiae, 2012, 32(2):257-269.
    [11]
    周学鸣, 蔡诗树. 厦门城市能见度和雾的特征与城市环境演变[J]. 气象, 2004, 30(1):41-45.

    ZHOU X M, CAI S S. On visibility and fog characters and environment evolvement in Xiamen City[J]. Meteorological Monthly, 2004, 30(1):41-45.
    [12]
    张飒, 冯建设. 济青高速公路大雾天气气候特征及其影响[J]. 气象, 2005, 31(2):70-73.

    ZHANG S, FENG J S. Climatic features and impact of heavy fog on transport along Jinan-Qingdao highway[J]. Meteorological Monthly, 2005, 31(2):70-73.
    [13]
    王志强, 王静爱. 关于雾灾几个相关问题的探讨[J]. 自然灾害学报, 2004(2):134-139.

    WANG Z Q, WANG J A. Discussion on several relative problems of fog disaster[J]. Journal of Natural Disasters, 2004(2):134-139.
    [14]
    姚作新, 秦荣茂, 任泉, 等. 新疆雾霾天气自动判识业务系统[J]. 气象科技, 2013, 41(5):949-954.

    YAO Z X, QIN R M, REN Q, et al. Operational automatic identification system of fog/haze for Xinjiang[J]. Meteorological Science and Technology, 2013, 41(5):949-954.
    [15]
    廖晓农, 张小玲, 王迎春, 等. 北京地区冬夏季持续性雾-霾发生的环境气象条件对比分析[J]. 环境科学, 2014, 35(6):2031-2044.

    LIAO X N, ZHANG X L, WANG Y C, et al. Comparative analysis on meteorological condition for persistent haze cases in summer and winter in Beijing[J]. Environmental Science, 2014, 35(6):2031-2044.
    [16]
    戴永立, 陶俊, 林泽健, 等. 2006—2009年我国超大城市霾天气特征及影响因子分析[J]. 环境科学, 2013, 34(8):2925-2932.
    doi: 10.1021/es9912877

    DAI Y L, TAO J, LIN Z J, et al. Characteristics of haze and its impact factors in four megacities in China during 2006-2009[J]. Environmental Science, 2013, 34(8):2925-2932. doi: 10.1021/es9912877
    [17]
    齐冰, 杜荣光, 查贲, 等. 杭州地区一次严重雾霾过程气溶胶特性分析[J]. 气象与环境学报, 2015, 31(4):35-41.

    QI B, DU R G, ZHA B, et al. Analysis of aerosol properties during a serious fog-haze process in Hangzhou region[J]. Journal of Meteorology and Environment, 2015, 31(4):35-41.
    [18]
    刘梅, 严文莲, 张备, 等. 2013年1月江苏雾霾天气持续和增强机制分析[J]. 气象, 2014, 40(7):835-843.

    LIU M, YAN W L, ZHANG B, et al. Analysis on persistence and intensification mechanism of fog and haze in Jiangsu in January 2013[J]. Meteorological Monthly, 2014, 40(7):835-843.
    [19]
    石增云, 孙冬燕, 尤凤春, 等. 北京2013年雾霾天气特点和服务应对措施[J]. 气象科技, 2014, 42(3):535-538.

    SHI Z Y, SUN D Y, YOU F C, et al. Features and service measures of fog-haze weather in Beijing in 2013[J]. Meteorological Science and Technology, 2014, 42(3):535-538.
    [20]
    张卫中, 闫利霞, 郭立平, 等. 廊坊市重污染天气大气环流形势及配置特征分析[J]. 环境工程技术学报, 2019, 9(4):335-341.

    ZHANG W Z, YAN L X, GUO L P, et al. Analysis of atmospheric circulation situation and allocation characteristics of heavily polluted weather in Langfang City[J]. Journal of Environmental Engineering Technology, 2019, 9(4):335-341.
    [21]
    李英华, 姚立英, 姚青, 等. 2013—2016年天津城区大气能见度的变化特征与影响因素[J]. 环境工程技术学报, 2018, 8(4):349-358.

    LI Y H, YAO L Y, YAO Q, et al. Analysis of variation characteristics and influencing factors of atmospheric visibility in Tianjin urban area from 2013 to 2016[J]. Journal of Environmental Engineering Technology, 2018, 8(4):349-358.
    [22]
    熊俊丽, 李彩艳. 北京市冬季PM2.5浓度变化特征及估算模型研究[J]. 环境工程技术学报, 2018, 8(5):533-538.

    XIONG J L, LI C Y. Study on variation characteristics and estimation model of PM2.5 concentration in Beijing in winter[J]. Journal of Environmental Engineering Technology, 2018, 8(5):533-538.
    [23]
    张天航, 迟茜元, 饶晓琴, 等. 2018年国家级空气质量主客观预报TS评分对比检验[J]. 环境工程技术学报, 2019, 9(3):213-222.

    ZHANG T H, CHI Q Y, RAO X Q, et al. Verification of national subjective and objective air quality forecast in 2018 by TS score[J]. Journal of Environmental Engineering Technology, 2019, 9(3):213-222.
    [24]
    孟丽红, 郝天依, 李培彦, 等. 天津市夏季重污染天气过程PM2.5输送特征[J]. 环境工程技术学报, 2020, 10(1):39-46.

    MENG L H, HAO T Y, LI P Y, et al. Transport characteristics of PM2.5 of heavy pollution weather in Tianjin in summer[J]. Journal of Environmental Engineering Technology, 2020, 10(1):39-46.
    [25]
    杜乐天. 对今年一月份我国霾雾重灾原因的浅见补遗[EB/OL]. 科学网. (2013-01-31)[2020-09-25]http://blog.sciencenet.cn/blog-2277-658087.html.
    [26]
    杨学祥, 杨冬红. 全球空气质量地图揭示的PM2.5自然因素[EB/OL]. 科学网.(2013-02-11)[2020-09-25]. http://blog.sciencenet.cn/blog-2277-661113.html .
    [27]
    梁光河. 裂解中的中国大陆与雾霾天气的成因[EB/OL]. 科学网.(2014-01-23)[2020-09-25]. http://blog.sciencenet.cn/blog-1074480-761624.html .
    [28]
    郭立平, 汤懋苍, 刘艳杰. 河北省廊坊地区暴雨预报的地气学方法[J]. 高原气象, 2014, 33(3):868-876.

    GUO L P, TANG M C, LIU Y J. The earth-atmosphere science forecast method of heavy rainfall in Langfang area in Hebei Province[J]. Plateau Meteorology, 2014, 33(3):868-876.
    [29]
    郭增建, 荣代潞. 从地气耦合讨论某些天灾预测问题[J]. 自然灾害学报, 1996(4):79-83.
    [30]
    魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999:63-72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(425) PDF Downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return