Citation: | Baoqiang MA, Xiao WANG, Chao TANG, Li LI, Jianyuan MA, Xuhua MIAO. Main applications of isotope technology in groundwater study[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 919-926. doi: 10.12153/j.issn.1674-991X.20200263 |
[1] |
CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton: Lewis Publishers, 1997.
|
[2] |
王恒纯. 同位素水文地质概论[M]. 北京: 地质出版社, 1991.
|
[3] |
ADELANA S M A. Environmental isotopes in hydrogeology[M]. New Jersey: John Wiley & Sons Inc, 2005.
|
[4] |
叶思源, 孙继朝, 姜春永. 水文地球化学研究现状与进展[J]. 地球学报, 2002, 23(5):477-482.
YE S Y, SUN J C, JIANG C Y. Current situation and advances in hydrogeochemical researches[J]. Acta Geosicientia Sinica, 2002, 23(5):477-482.
|
[5] |
马传明, 刘存富, 周爱国. 同位素水文学新技术新方法[M]. 武汉: 中国地质大学出版社, 2010.
|
[6] |
汪集旸, 陈建生, 陆宝宏, 等. 同位素水文学的若干回顾与展望[J]. 河海大学学报(自然科学版), 2015, 43(5):406-413.
WANG J Y, CHEN J S, LU B H, et al. Review and prospect of isotope hydrology[J]. Journal of Hohai University(Natural Sciences), 2015, 43(5):406-413.
|
[7] |
李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6):636-646.
LI H L, WANG X J. Submarine groundwater discharge:a review[J]. Advances in Earth Science, 2015, 30(6):636-646.
|
[8] |
张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006, 17(5):738-747.
ZHANG Y H, WU Y Q, WEN X H, et al. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 2006, 17(5):738-747.
|
[9] |
中国科学院. 中国学科发展战略:地下水科学[M]. 北京: 科学出版社, 2018.
|
[10] |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133:1702-1703.
doi: 10.1126/science.133.3465.1702 |
[11] |
周训. 地下水科学专论[M]. 北京: 地质出版社, 2010.
|
[12] |
马金珠, 黄天明, 丁贞玉, 等. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9):922-930.
MA J Z, HUANG T M, DING Z Y, et al. Environmental isotopes as the indicators of the groundwater recharge in the south Badain Jaran Desert[J]. Advances in Earth Science, 2007, 22(9):922-930.
|
[13] |
Global network of isotopes in precipitation(GNIP)[EB/OL]. [2020-11-03]. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html.
|
[14] |
KONG Y L, WANG K, LI J, et al. Stable isotopes of precipitation in China:a consideration of moisture sources[J]. Water, 2019, 11(6):1239.
doi: 10.3390/w11061239 |
[15] |
陈宗宇, 万力, 聂振龙, 等. 利用稳定同位素识别黑河流域地下水的补给来源[J]. 水文地质工程地质, 2006, 33(6):9-14.
CHEN Z Y, WAN L, NIE Z L, et al. Identification of groundwater recharge in the Heihe Basin using environmental isotopes[J]. Hydrogeology & Engineering Geology, 2006, 33(6):9-14.
|
[16] |
马致远. 环境同位素方法在平凉市岩溶地下水研究中的应用[J]. 地质论评, 2004, 50(4):433-439.
MA Z Y. Application of the environmental isotope technique to the study of karst groundwater in Pingliang City[J]. Geological Review, 2004, 50(4):433-439.
|
[17] |
LI J, PANG Z H, KONG Y L, et al. Groundwater isotopes biased toward heavy rainfall events and implications on the local meteoric water line[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(11):6259-6266.
doi: 10.1029/2018JD028413 |
[18] |
LIN R F, WEI K Q. Tritium profiles of pore water in the Chinese loess unsaturated zone:implications for estimation of groundwater recharge[J]. Journal of Hydrology, 2006, 328(1/2):192-199.
doi: 10.1016/j.jhydrol.2005.12.010 |
[19] |
HUANG T M, MA B Q, PANG Z H, et al. How does precipitation recharge groundwater in loess aquifers:evidence from multiple environmental tracers[J]. Journal of Hydrology, 2020, 583:124532.
doi: 10.1016/j.jhydrol.2019.124532 |
[20] |
卞跃跃, 赵丹. 四川康定地热田地下热水成因研究[J]. 地球学报, 2018, 39(4):491-497.
BIAN Y Y, ZHAO D. Genesis of geothermal waters in the Kangding geothermal field,Sichuan Province[J]. Acta Geoscientica Sinica, 2018, 39(4):491-497.
|
[21] |
苏小四, 吴春勇, 董维红, 等. 鄂尔多斯沙漠高原白垩系地下水锶同位素的演化机理[J]. 成都理工大学学报(自然科学版), 2011, 38(3):348-358.
SU X S, WU C Y, DONG W H, et al. Strontium isotope evolution mechanism of the Cretaceous groundwater in Ordos Desert Plateau[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2011, 38(3):348-358.
|
[22] |
叶萍, 周爱国, 刘存富, 等. 河北平原地下水水-岩作用新证据:锶同位素示踪演变特征[J]. 水文地质工程地质, 2007, 34(4):41-43.
YE P, ZHOU A G, LIU C F, et al. New water-rock interaction evidence for groundwater in the Hebei Plain:characteristics of Sr isotope tracer[J]. Hydrogeology & Engineering Geology, 2007, 34(4):41-43.
|
[23] |
HUANG T M, MA B Q. The origin of major ions of groundwater in a loess aquifer[J]. Water, 2019, 11(12):2464.
doi: 10.3390/w11122464 |
[24] |
TIPPER E T, GAILLARDET J, LOUVAT P, et al. Mg isotope constraints on soil pore-fluid chemistry:evidence from Santa Cruz,California[J]. Geochimica et Cosmochimica Acta, 2010, 74(14):3883-3896.
doi: 10.1016/j.gca.2010.04.021 |
[25] |
JACOBSON A D, ZHANG Z F, LUNDSTROM C, et al. Behavior of Mg isotopes during dedolomitization in the Madison aquifer,South Dakota[J]. Earth and Planetary Science Letters, 2010, 297(3/4):446-452.
doi: 10.1016/j.epsl.2010.06.038 |
[26] |
ZHANG H, JIANG X W, WAN L, et al. Fractionation of Mg isotopes by clay formation and calcite precipitation in groundwater with long residence times in a sandstone aquifer,Ordos Basin,China[J]. Geochimica et Cosmochimica Acta, 2018, 237:261-274.
doi: 10.1016/j.gca.2018.06.023 |
[27] |
KOHL D H, SHEARER G B, COMMONER B. Fertilizer nitrogen:contribution to nitrate in surface water in a corn belt watershed[J]. Science, 1971, 174:1331-1334.
doi: 10.1126/science.174.4016.1331 |
[28] |
HEATON T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review[J]. Chemical Geology:Isotope Geoscience Section, 1986, 59:87-102.
doi: 10.1016/0168-9622(86)90059-X |
[29] |
AMBERGER A, SCHMIDT H L. Natürliche isotopengehalte von nitrat als indikatoren für dessen herkunft[J]. Geochimica et Cosmochimica Acta, 1987, 51(10):2699-2705.
doi: 10.1016/0016-7037(87)90150-5 |
[30] |
周迅, 姜月华. 氮、氧同位素在地下水硝酸盐污染研究中的应用[J]. 地球学报, 2007, 28(4):389-395.
ZHOU X, JIANG Y H. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica, 2007, 28(4):389-395.
|
[31] |
KENDALL C. Tracing nitrogen sources and cycling in catchments[C]//Isotope tracers in catchment hydrology. Amsterdam: Elsevier, 1998:519-576.
|
[32] |
BÖTTCHER J, STREBEL O, VOERKELIUS S, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3/4):413-424.
doi: 10.1016/0022-1694(90)90068-9 |
[33] |
XUE D M, de BAETS B, van CLEEMPUT O, et al. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water[J]. Environmental Pollution, 2012, 161:43-49.
doi: 10.1016/j.envpol.2011.09.033 |
[34] |
KORTH F, DEUTSCH B, FREY C, et al. Nitrate source identification in the Baltic Sea using its isotopic ratios in combination with a Bayesian isotope mixing model[J]. Biogeosciences, 2014, 11(17):4913-4924.
doi: 10.5194/bg-11-4913-2014 |
[35] |
XIA Y Q, LI Y F, ZHANG X Y, et al. Nitrate source apportionment using a combined dual isotope,chemical and bacterial property,and Bayesian model approach in river systems[J]. Journal of Geophysical Research:Biogeosciences, 2017, 122(1):2-14.
doi: 10.1002/2016JG003447 |
[36] |
BRIAND C, PLAGNES V, SEBILO M, et al. Combination of nitrate(N,O) and boron isotopic ratios with microbiological indicators for the determination of nitrate sources in karstic groundwater[J]. Environmental Chemistry, 2013, 10(5):365.
doi: 10.1071/EN13036 |
[37] |
文冬光. 用环境同位素论区域地下水资源属性[J]. 地球科学, 2002, 27(2):141-147.
WEN D G. Groundwater resources attribute based on environmental isotopes[J]. Earth Science, 2002, 27(2):141-147.
|
[38] |
韩永, 王广才, 邢立亭, 等. 地下水放射性同位素测年方法研究进展[J]. 煤田地质与勘探, 2009, 37(5):37-42.
HAN Y, WANG G C, XING L T, et al. Advances in studying groundwater radioisotope dating methods[J]. Coal Geology & Exploration, 2009, 37(5):37-42.
|
[39] |
COLLON P, KUTSCHERA W, LU Z T. Tracing noble gas radionuclides in the environment[J]. Annual Review of Nuclear and Particle Science, 2004, 54(1):39-67.
doi: 10.1146/annurev.nucl.53.041002.110622 |
[40] |
GLEESON T, BEFUS K M, JASECHKO S, et al. The global volume and distribution of modern groundwater[J]. Nature Geoscience, 2016, 9(2):161-167.
doi: 10.1038/ngeo2590 |
[41] |
雷言, 翟远征, 王金生, 等. 年轻地下水定年研究综述[J]. 地球与环境, 2015, 43(2):233-242.
LEI Y, ZHAI Y Z, WANG J S, et al. A review of young groundwater dating[J]. Earth and Environment, 2015, 43(2):233-242.
|
[42] |
秦大军. 地下水CFC定年方法及应用[J]. 地下水, 2005, 27(6):435-437.
|
[43] |
李晶晶, 周爱国, 刘存富, 等. 年轻地下水测年最新技术:SF6法[J]. 水文地质工程地质, 2005, 32(1):94-97.
LI J J, ZHOU A G, LIU C F, et al. A new method in dating young groudwater:SF6 method[J]. Hydrogeology and Engineering Geology, 2005, 32(1):94-97.
|
[44] |
BAYARI S, OZYURT N N, HATIPOGLU Z, et al. Groundwater age:a vital information in protecting the groundwater dependent ecosystem[J/OL]. Groundwater and Ecosystems, 2006.doi: 10.1007/978-3-030-30215-3_21.
doi: 10.1007/978-3-030-30215-3_21 |
[45] |
COOK P G, SOLOMON D K. Recent advances in dating young groundwater:chlorofluorocarbons,3H,3He and 85Kr[J]. Journal of Hydrology, 1997, 191(1/2/3/4):245-265.
doi: 10.1016/S0022-1694(96)03051-X |
[46] |
陈宗宇, 齐继祥, 张兆吉, 等. 北方典型盆地同位素水文地质学方法应用[M]. 北京: 科学出版社, 2010.
|
[47] |
LOOSLI H H. A dating method with 39Ar[J]. Earth and Planetary Science Letters, 1983, 63(1):51-62.
doi: 10.1016/0012-821X(83)90021-3 |
[48] |
谭忠成, 陆宝宏, 汪集旸, 等. 同位素水文学研究综述[J]. 河海大学学报(自然科学版), 2009, 37(1):16-22.
TAN Z C, LU B H, WANG J Y, et al. Isotope hydrology:progress and prospects[J]. Journal of Hohai University(Natural Sciences), 2009, 37(1):16-22.
|
[49] |
陈宗宇, 聂振龙, 张荷生, 等. 从黑河流域地下水年龄论其资源属性[J]. 地质学报, 2004, 78(4):560-567.
CHEN Z Y, NIE Z L, ZHANG H S, et al. Groundwater renewability based on groundwater ages in the Heihe Valley Alluvial Basin,Northwestern China[J]. Acta Geologica Sinica, 2004, 78(4):560-567.
|
[50] |
苏小四, 林学钰, 董维红, 等. 银川平原深层地下水14C年龄校正[J]. 吉林大学学报(地球科学版), 2006, 36(5):830-836.
SU X S, LIN X Y, DONG W H, et al. 14C age correction of deep groundwater in Yinchuan Plain[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(5):830-836.
|
[51] |
王宗礼, 何建华. 地下水年龄测试的主要方法与进展[J]. 甘肃水利水电技术, 2014, 50(1):6-8.
|
[52] |
郭娇, 石建省, 王伟. 华北平原地下水年龄校正[J]. 地球学报, 2007, 28(4):396-404.
GUO J, SHI J S, WANG W. Age correction of the groundwater in North China Plain[J]. Acta Geoscientica Sinica, 2007, 28(4):396-404.
|
[53] |
刘存富, 王佩仪, 周炼. 河北平原地下水氢、氧、碳、氯同位素组成的环境意义[J]. 地学前缘, 1997, 4(2):267-274.
LIU C F, WANG P Y, ZHOU L. The environment significance of H,O,C and Cl isotopic composition in groundwater of Hebei Plain[J]. Earth Science Frontiers, 1997, 4(2):267-274.
|
[54] |
MAZOR E. Chemical and isotopic groundwater hydrology[M]. New York: Marcel Dekker Inc, 1997.
|
[55] |
林晓波, 姜月华, 汤朝阳. 放射性碳同位素在水文地质中的应用进展[J]. 地下水, 2006, 28(3):30-35.
LIN X B, JIANG Y H, TANG C Y. Application and progress of radio carbon isotopes in the hydrogeology study[J]. Ground Water, 2006, 28(3):30-35.
|
[56] |
张彦鹏, 周爱国, 周建伟, 等. 石家庄地区地下水中溶解性有机碳同位素特征及其环境指示意义[J]. 水文地质工程地质, 2013, 40(3):12-18.
ZHANG Y P, ZHOU A G, ZHOU J W, et al. Characteristics of dissolved organic carbon isotope in groundwater in Shijiazhuang and its environmental implications[J]. Hydrogeology & Engineering Geology, 2013, 40(3):12-18.
|
[57] |
周志超, 云龙, 王驹, 等. 古地下水测年法在高放废物地质处置中的应用[J]. 铀矿地质, 2014, 30(1):57-64.
ZHOU Z C, YUN L, WANG J, et al. Application of fossil groundwater dating method in the geological disposal of high-level radioactive waste[J]. Uranium Geology, 2014, 30(1):57-64.
|
[58] |
尚海敏, 李国敏, 于进庆. 环境同位素技术在地下水研究中的应用[J]. 地下水, 2008, 30(2):18-22.
SHANG H M, LI G M, YU J Q. Applications of environmental isotope in groundwater studying[J]. Ground Water, 2008, 30(2):18-22.
|
[59] |
GUENDOUZ A, MICHELOT J L. Chlorine-36 dating of deep groundwater from northern Sahara[J]. Journal of Hydrology, 2006, 328(3/4):572-580.
doi: 10.1016/j.jhydrol.2006.01.002 |
[60] |
SHERIF M I, SULTAN M, STURCHIO N C. Chlorine isotopes as tracers of solute origin and age of groundwaters from the Eastern Desert of Egypt[J]. Earth and Planetary Science Letters, 2019, 510:37-44.
doi: 10.1016/j.epsl.2018.12.035 |
[61] |
马致远, 张雪莲, 何丹, 等. 关中盆地深层地热水36Cl测年研究[J]. 水文地质工程地质, 2016, 43(1):157-163.
MA Z Y, ZHANG X L, HE D, et al. A study of 36Cl age for the deep geothermal water in the Guanzhong Basin[J]. Hydrogeology & Engineering Geology, 2016, 43(1):157-163.
|
[62] |
凌新颖, 马金珠, 杨欢, 等. 古地下水定年新方法:81Kr法[J]. 地质与资源, 2019, 28(1):90-94.
LING X Y, MA J Z, YANG H, et al. 81Kr:a new method of paleogroundwater dating[J]. Geology and Resources, 2019, 28(1):90-94.
|
[63] |
李惠娣. 测年方法在地下水中的应用[J]. 水资源与水工程学报, 2008, 19(1):1-6.
LI H D. Application on dating method in groundwater[J]. Journal of Water Resources and Water Engineering, 2008, 19(1):1-6.
|
[64] |
廖小青, 刘贯群, 袁瑞强, 等. 同位素测年新发展:81Kr测定古老地下水年龄理论[J]. 工程勘察, 2006, 34(2):31-33.
LIAO X Q, LIU G Q, YUAN R Q, et al. The new development of isotope dating:to data the old groundwater by 81Kr[J]. Journal of Geotechnical Investigation & Surveying, 2006, 34(2):31-33.
|
[65] |
涂乐义. 地下水溶解氪气分析用于放射性氪同位素测年[D]. 合肥:中国科学技术大学, 2015.
|
[66] |
JIANG W, BAILEY K, LU Z T, et al. An atom counter for measuring 81Kr and 85Kr in environmental samples[J]. Geochimica et Cosmochimica Acta, 2012, 91:1-6.
doi: 10.1016/j.gca.2012.05.019 |
[67] |
LU Z T, SCHLOSSER P, Jr SMETHIE W M, et al. Tracer applications of noble gas radionuclides in the geosciences[J]. Earth-Science Reviews, 2014, 138:196-214.
doi: 10.1016/j.earscirev.2013.09.002 |
[68] |
LI J, PANG Z H, YANG G M, et al. Million-year-old groundwater revealed by krypton-81 dating in Guanzhong Basin,China[J]. Science Bulletin, 2017, 62(17):1181-1184.
doi: 10.1016/j.scib.2017.08.009 |
[69] |
MIKE EDMUNDS W. Limits to the availability of groundwater in Africa[J]. Environmental Research Letters, 2012, 7(2):021003.
doi: 10.1088/1748-9326/7/2/021003 |
[70] |
王金生, 翟远征, 滕彦国, 等. 试论地下水更新能力与再生能力[J]. 北京师范大学学报(自然科学版), 2011, 47(2):213-216.
WANG J S, ZHAI Y Z, TENG Y G, et al. Study on groundwater renewal capacity and reproducibility[J]. Journal of Beijing Normal University(Natural Science), 2011, 47(2):213-216.
|
[71] |
SHI X F, DONG W H, LI M Z, et al. Evaluation of groundwater renewability in the Henan Plains,China[J]. Geochemical Journal, 2012, 46(2):107-115.
doi: 10.2343/geochemj.1.0154 |
[72] |
HUANG T M, PANG Z H, LI J, et al. Mapping groundwater renewability using age data in the Baiyang Alluvial Fan,NW China[J]. Hydrogeology Journal, 2017, 25(3):743-755.
doi: 10.1007/s10040-017-1534-z |
[73] |
FERGUSON G, CUTHBERT M O, BEFUS K, et al. Rethinking groundwater age[J]. Nature Geoscience, 2020, 13(9):592-594.
doi: 10.1038/s41561-020-0629-7 |
[74] |
LE-GAL-LA-SALLE C, MARLIN C, LEDUC C, et al. Renewal rate estimation of groundwater based on radioactive tracers(3H,14C) in an unconfined aquifer in a semi-arid area,Iullemeden Basin,Niger[J]. Journal of Hydrology, 2001, 254(1/2/3/4):145-156.
doi: 10.1016/S0022-1694(01)00491-7 |
[75] |
阮云峰, 赵良菊, 肖洪浪, 等. 黑河流域地下水同位素年龄及可更新能力研究[J]. 冰川冻土, 2015, 37(3):767-782.
RUAN Y F, ZHAO L J, XIAO H L, et al. The groundwater in the Heihe River basin:isotope age and renewability[J]. Journal of Glaciology and Geocryology, 2015, 37(3):767-782.
|
[76] |
万玉玉, 苏小四, 董维红, 等. 鄂尔多斯白垩系地下水盆地中深层地下水可更新速率[J]. 吉林大学学报(地球科学版), 2010, 40(3):623-630.
WAN Y Y, SU X S, DONG W H, et al. Evaluation of groundwater renewal ability in the Ordos Cretaceous groundwater basin[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3):623-630.
|
[77] |
陈宗宇, 陈京生, 费宇红, 等. 利用氚估算太行山前地下水更新速率[J]. 核技术, 2006, 29(6):426-431.
CHEN Z Y, CHEN J S, FEI Y H, et al. Estimation of groundwater renewal rate by tritium in the piedmont plain of the Taihang Mountains[J]. Nuclear Techniques, 2006, 29(6):426-431.
|