Citation: | HUANG Naixian, QI Yifan, JIN Wei. Research progress on the control of sediments in the drainage pipe[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 507-513. doi: 10.12153/j.issn.1674-991X.20210017 |
[1] |
徐祖信, 徐晋, 金伟, 等. 我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水, 2019, 45(3):1-5.
XU Z X, XU J, JIN W, et al. Challenges and opportunities of black and odorous water body in the cities of China[J]. Water & Wastewater Engineering, 2019, 45(3):1-5.
|
[2] |
吴振华. 上海市排水系统放江污染统计分析[D]. 上海: 同济大学, 2015.
|
[3] |
韩芸, 彭党聪, 许玮, 等. 合流制管道溢流水质分析及特性研究[J]. 西安建筑科技大学学报(自然科学版), 2007(6):834-838.
HAN Y, PENG D C, XU W, et al. Research on characteristics of combined sewer overflows[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2007(6):834-838.
|
[4] |
高原, 王红武, 张善发, 等. 合流制排水管道沉积物及其模型研究进展[J]. 中国给水排水, 2010, 26(2):15-18.
GAO Y, WANG H W, ZHANG S F, et al. Current research progress in combined sewer sediments and their models[J]. China Water & Wastewater, 2010, 26(2):15-18.
|
[5] |
CHEBBO G, LAPLACE D, BACHOC A, et al. Technical solutions envisaged in managing solids in combined sewer networks[J]. Water Science and Technology, 1996, 33(9):237-244.
|
[6] |
徐祖信, 张辰, 李怀正. 我国城市河流黑臭问题分类与系统化治理实践[J]. 给水排水, 2018, 44(10):1-5.
|
[7] |
崔爽. 合流制管道沉积物中氮和有机物污染特性研究[D]. 北京: 北京建筑大学, 2014.
|
[8] |
李茂英, 李海燕. 城市排水管道中沉积物及其污染研究进展[J]. 给水排水, 2008, 34(增刊1):88-92.
|
[9] |
张伟, 余健, 李葳, 等. 广州市排水管道沉积现状研究分析[J]. 给水排水, 2012, 38(7):147-150.
|
[10] |
徐强强, 李阳, 马黎, 等. 城市雨水管道沉积物氮磷污染溶出特性试验研究[J/OL]. 环境科学研究,doi: 10.13198/j.issn.1001.6929.2020.07.18.
doi: 10.13198/j.issn.1001.6929.2020.07.18 |
[11] |
CRABTREE R W. Sediments in sewers[J]. Journal of the Institution of Water and Environmental Management, 1989, 3(6):569-578.
doi: 10.1111/wej.1989.3.issue-6 |
[12] |
AHYERRE M, CHEBBO G. Identification of in-sewer sources of organic solids contributing to combined sewer overflows[J]. Environmental Technology, 2002, 23(9):1063-1073.
doi: 10.1080/09593332308618353 |
[13] |
ASHLEY R M, CRABTREE R W. Sediment origins,deposition and buildup in combined sewer systems[J]. Water Science and Technology, 1992, 25(8):1-12.
|
[14] |
LAHAV O, SAGIV A, FRIEDLER E. A different approach for predicting H2S(g) emission rates in gravity sewers [J]. Water Research, 2006, 40(2):259-266.
doi: 10.1016/j.watres.2005.10.026 |
[15] |
HEANEY J P, PITT R, FIELD R. Innovative urban wet-weather flow management systems:EPA/600/R-99/029[R/OL]. Cincinnati,OH:National Risk Management Research Laboratory,Office of Researchand Development,US Environmental Protection Agency,1999[2021-01-12] http://purl.access.gpo.gov/GPO/LPS34527.
|
[16] |
陈珂莉, 李朋, 金伟, 等. 排水管道沉积物中胞外聚合物的提取及检测方法研究[J]. 中国给水排水, 2018, 34(7):32-36.
CHEN K L, LI P, JIN W, et al. Extraction and detection method of extracellular polymeric substances (EPS) in sediment of sewage system[J]. China Water & Wastewater, 2018, 34(7):32-36.
|
[17] |
陈珂莉. 微生物作用对排水管道沉积物冲刷特性影响研究[D]. 上海: 同济大学, 2017.
|
[18] |
OMS C, GROMAIRE M C, CHEBBO G. In situ observation of the water-sediment interface in combined sewers,using endoscopy [J]. Water Science and Technology, 2003, 47(4):11-18.
|
[19] |
ROCHER V, GARNAUD S, MOILLERON R, et al. Hydrocarbon pollution fixed to combined sewer sediment:a case study in Paris[J]. Chemosphere, 2004, 54(7):795-804.
doi: 10.1016/j.chemosphere.2003.10.011 |
[20] |
ROCHER V, AZIMI S, MOILLERON R, et al. Hydrocarbons and heavy metals in the different sewer deposits in the ‘Le Marais’ catchment(Paris,France):stocks,distributions and origins[J]. Science of the Total Environment, 2004, 323(1/2/3):107-122.
doi: 10.1016/j.scitotenv.2003.10.010 |
[21] |
TAIT S J, RUSHFORTH P J, SAUL A J. A laboratory study of the erosion and transport of cohesive-like sediment mixtures in sewers[J]. Water Science and Technology, 1998, 37(1):163-170.
doi: 10.2166/wst.1998.0040 |
[22] |
CHEN G H, LEUNG D H W, HUNG J C. Biofilm in the sediment phase of a sanitary gravity sewer[J]. Water Research, 2003, 37(11):2784-2788.
doi: 10.1016/S0043-1354(03)00083-6 |
[23] |
VOLLERTSEN J, HVITVED-JACOBSEN T. Resuspension and oxygen uptake of sediments in combined sewers[J]. Urban Water, 2000, 2(1):21-27.
doi: 10.1016/S1462-0758(00)00036-4 |
[24] |
BLACK K S, TOLHURST T J, PATERSON D M, et al. Working with natural cohesive sediments[J]. Journal of Hydraulic Engineering, 2002, 128(1):2-8.
doi: 10.1061/(ASCE)0733-9429(2002)128:1(2) |
[25] |
FANG H W, SHANG Q Q, CHEN M H, et al. Changes in the critical erosion velocity for sediment colonized by biofilm[J]. Sedimentology, 2014, 61(3):648-659.
doi: 10.1111/sed.2014.61.issue-3 |
[26] |
TOLHURST T J, CONSALVEY M, PATERSON D M. Changes in cohesive sediment properties associated with the growth of a diatom biofilm[J]. Hydrobiologia, 2008, 596(1):225-239.
doi: 10.1007/s10750-007-9099-9 |
[27] |
SECO I, VALENTIN M G, SCHELLART A, et al. Erosion resistance and behaviour of highly organic in-sewer sediment[J]. Water Science and Technology, 2014, 69(3):672-679.
doi: 10.2166/wst.2013.761 |
[28] |
LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36(7):1653-1665.
doi: 10.1016/S0043-1354(01)00379-7 |
[29] |
TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation,structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2):227-233.
doi: 10.1007/s002530100766 |
[30] |
ROCHER V, AZIMI S, MOILLERON R, et al. Biofilm in combined sewers:wet weather pollution source and/or dry weather pollution indicator[J]. Water Science and Technology, 2003, 47(4):35-43.
|
[31] |
LIU S, GUNAWAN C, BARRAUD N, et al. Understanding,monitoring,and controlling biofilm growth in drinking water distribution systems[J]. Environmental Science & Technology, 2016, 50(17):8954-8976.
doi: 10.1021/acs.est.6b00835 |
[32] |
SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances(EPS) of microbial aggregates in biological wastewater treatment systems:a review[J]. Biotechnology Advances, 2010, 28(6):882-894.
doi: 10.1016/j.biotechadv.2010.08.001 |
[33] |
LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass[J]. Water Research, 2002, 36(11):2711-2720.
doi: 10.1016/S0043-1354(01)00413-4 |
[34] |
YU G H, HE P J, SHAO L M. Characteristics of extracellular polymeric substances(EPS) fractions from excess sludges and their effects on bioflocculability[J]. Bioresource Technology, 2009, 100(13):3193-3198.
doi: 10.1016/j.biortech.2009.02.009 |
[35] |
PALMGREN R, NIELSEN P H. Accumulation of DNA in the exopolymeric matrix of activated sludge and bacterial cultures[J]. Water Science and Technology, 1996, 34(5/6):233-240.
doi: 10.2166/wst.1996.0555 |
[36] |
JAHN A, GRIEBE T, NIELSEN P H. Composition of pseudomonas putida biofilms:accumulation of protein in the biofilm matrix[J]. Biofouling, 1999, 14(1):49-57.
doi: 10.1080/08927019909378396 |
[37] |
GEHRKE T, TELEGDI J, THIERRY D, et al. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J]. Applied and Environmental Microbiology, 1998, 64(7):2743-2747.
doi: 10.1128/AEM.64.7.2743-2747.1998 |
[38] |
FLEMMING H C, WINGENDER J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633.
doi: 10.1038/nrmicro2415 |
[39] |
FLEMMING H C, NEU T R, WOZNIAK D J. The EPS matrix:the “house of biofilm cells”[J]. Journal of Bacteriology, 2007, 189(22):7945-7947.
doi: 10.1128/JB.00858-07 |
[40] |
FLEMMING H C, WINGENDER J. Relevance of microbial extracellular polymeric substances(EPSs):Part Ⅰ.structural and ecological aspects[J]. Water Science and Technology, 2001, 43(6):1-8.
|
[41] |
FLEMMING H C, WINGENDER J. Relevance of microbial extracellular polymeric substances(EPSs):Part Ⅱ.technical aspects[J]. Water Science and Technology, 2001, 43(6):9-16.
|
[42] |
谭煜, 付丽亚, 周鉴. 胞外聚合物(EPS)对污水处理影响的研究进展[J/OL]. 环境工程技术学报,doi: 10.12153/j.issn.1674-991X.20200178.
doi: 10.12153/j.issn.1674-991X.20200178 |
[43] |
YANG X L, XU T G, CAO P, et al. The viscosity behaviors of bacterial suspensions or extracellular polymeric substances and their effects on aerobic granular sludge[J]. Environmental Science and Pollution Research, 2019, 26(29):30087-30097.
doi: 10.1007/s11356-019-06012-1 |
[44] |
YOU G X, WANG P F, HOU J, et al. Influence of CeO2 nanoparticles on viscoelastic properties of sludge:role of extracellular polymeric substances [J]. Environmental Research, 2018, 167:34-41.
doi: 10.1016/j.envres.2018.07.005 |
[45] |
EKSTRAND E M, SVENSSON B H, SAFARIC L, et al. Viscosity dynamics and the production of extracellular polymeric substances and soluble microbial products during anaerobic digestion of pulp and paper mill wastewater sludges[J]. Bioprocess and Biosystems Engineering, 2020, 43(2):283-291.
doi: 10.1007/s00449-019-02224-4 |
[46] |
LI Z W, LIN L, LIU X, et al. Understanding the role of extracellular polymeric substances in the rheological properties of aerobic granular sludge[J]. Science of the Total Environment, 2020, 705:1359481.1-135948.7.
|
[47] |
MORE T T, YADAV J S S, YAN S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144:1-25.
doi: 10.1016/j.jenvman.2014.05.010 |
[48] |
潘国庆. 不同排水体制的污染负荷及控制措施研究[D]. 北京: 北京建筑工程学院, 2007.
|
[49] |
WILLIAMS K J, TAIT S J, ASHLEY R M. In-sewer sedimentation associated with active flow control[J]. Water Science and Technology, 2009, 60(1):55-63.
doi: 10.2166/wst.2009.286 |
[50] |
高安礼. 窨井清掏机器人研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
|
[51] |
刘志长. 合流制排水管道沉积物的沉积状况及控制技术研究[D]. 长沙: 湖南大学, 2011.
|
[52] |
聂凤, 熊正为, 黄建洪, 等. 合流制排水系统调蓄池的研究进展[J]. 城市道桥与防洪, 2011(8):313-316.
NIE F, XIONG Z W, HUANG J H, et al. Research process of storage tanks in combined drainage system[J]. Urban Roads Bridges & Flood Control, 2011(8):313-316.
|
[53] |
DINKELACKERA. Cleaning of sewers[J]. Water Science and Technology, 1992, 25(8):37-46.
|