Citation: | Zhiqiang JIAN, Gaoting ZHOU, Bin GONG, Ying ZHAO. Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 927-934. DOI: 10.12153/j.issn.1674-991X.20210027 |
[1] |
AWUAL M R. Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent[J]. Journal of Cleaner Production, 2019, 228:1311-1319.
doi: 10.1016/j.jclepro.2019.04.325 |
[2] |
郑丙辉. “十二五”太湖富营养化控制与治理研究思路及重点[J]. 环境科学研究, 2014, 27(7):683-687.
|
[3] |
ZHANG Z H, WANG Y, LESLIE G L, et al. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors[J]. Water Research, 2015, 69:210-222.
doi: 10.1016/j.watres.2014.11.011 |
[4] |
PARK T, AMPUNAN V, MAENG S, et al. Application of steel slag coated with sodium hydroxide to enhance precipitation-coagulation for phosphorus removal[J]. Chemosphere, 2017, 167:91-97.
doi: 10.1016/j.chemosphere.2016.09.150 |
[5] |
刘宁, 陈小光, 崔彦召, 等. 化学除磷工艺研究进展[J]. 化工进展, 2012, 31(7):1597-1603.
LIU N, CHEN X G, CUI Y Z, et al. Research progress of chemical dephosphorization process[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1597-1603.
|
[6] |
FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment:a review[J]. Journal of Hazardous Materials, 2014, 267:194-205.
doi: 10.1016/j.jhazmat.2013.12.062 |
[7] |
JI Y. Ions removal by iron nanoparticles:a study on solid-water interface with zeta potential[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 444:1-8.
doi: 10.1016/j.colsurfa.2013.12.031 |
[8] |
GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:the development in zero-valent iron technology in the last two decades(1994-2014)[J]. Water Research, 2015, 75:224-248.
doi: 10.1016/j.watres.2015.02.034 |
[9] |
HU Y, ZHAN G M, PENG X, et al. Enhanced Cr(VI) removal of zero-valent iron with high proton conductive FeC2O4·2H2O shell[J]. Chemical Engineering Journal, 2020, 389:124414.
doi: 10.1016/j.cej.2020.124414 |
[10] |
WU Z D, TANG Y B, YUAN X J, et al. Reduction of bromate by zero valent iron(ZVI) enhances formation of brominated disinfection by-products during chlorination[J]. Chemosphere, 2021, 268:129340.
doi: 10.1016/j.chemosphere.2020.129340 |
[11] |
孟凡生, 王业耀, 李莉. PRB去除模拟地下水中六价铬的反应特性[J]. 环境工程技术学报, 2013, 3(2):92-97.
MENG F S, WANG Y Y, LI L. Reactivity characteristics of hexavalent chromium removed by PRB in simulated ground water[J]. Journal of Environmental Engineering Technology, 2013, 3(2):92-97.
|
[12] |
KIM I, CHA D K. Effect of low temperature on abiotic and biotic nitrate reduction by zero-valent iron[J]. Science of the Total Environment, 2021, 754:142410.
doi: 10.1016/j.scitotenv.2020.142410 |
[13] |
LI Y M, GUO X J, DONG H Y, et al. Selenite removal from groundwater by zero-valent iron(ZVI) in combination with oxidants[J]. Chemical Engineering Journal, 2018, 345:432-440.
doi: 10.1016/j.cej.2018.03.187 |
[14] |
HE Y, GAO J F, FENG F Q, et al. The comparative study on the rapid decolorization of azo,anthraquinone and triphenylmethane dyes by zero-valent iron[J]. Chemical Engineering Journal, 2012, 179:8-18.
doi: 10.1016/j.cej.2011.05.107 |
[15] |
HUANG Y H, PEDDI P K, TANG C L, et al. Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater[J]. Separation and Purification Technology, 2013, 118:690-698.
doi: 10.1016/j.seppur.2013.07.009 |
[16] |
张颖纯, 王伟. 纳米零价铁颗粒除磷反应机理[J]. 环境工程学报, 2015, 9(5):2041-2047.
ZHANG Y C, WANG W. Mechanism of phosphorus removal by nanoscale zero-valent iron(nZVI)[J]. Chinese Journal of Environmental Engineering, 2015, 9(5):2041-2047.
|
[17] |
WU D L, SHEN Y H, DING A, et al. Phosphate removal from aqueous solutions by nanoscale zero-valent iron[J]. Environmental Technology, 2013, 34(18):2663-2669.
doi: 10.1080/09593330.2013.786103 |
[18] |
ALMEELBI T, BEZBARUAH A. Aqueous phosphate removal using nanoscale zero-valent iron[J/OL]//Nanotechnology for Sustainable Development, 2014.doi: 10.1007/978-3-030-30215-3_21.
doi: 10.1007/978-3-030-30215-3_21 |
[19] |
WEN Z P, ZHANG Y L, DAI C M. Removal of phosphate from aqueous solution using nanoscale zerovalent iron(nZVI)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:433-440.
doi: 10.1016/j.colsurfa.2014.06.017 |
[20] |
LIU H B, CHEN T H, ZOU X H, et al. Removal of phosphorus using nZVI derived from reducing natural goethite[J]. Chemical Engineering Journal, 2013, 234:80-87.
doi: 10.1016/j.cej.2013.08.061 |
[21] |
NAGOYA S, NAKAMICHI S, KAWASE Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron:a novel kinetic model for electrostatic adsorption,surface complexation and precipitation of phosphate under oxic conditions[J]. Separation and Purification Technology, 2019, 218:120-129.
doi: 10.1016/j.seppur.2019.02.042 |
[22] |
YOSHINO H, TOKUMURA M, KAWASE Y. Simultaneous removal of nitrate,hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron[J]. Journal of Environmental Science and Health Part A:Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(9):998-1006.
|
[23] |
JEONG J Y, AHN B M, KIM Y J, et al. Continuous phosphorus removal from water by physicochemical method using zero valent iron packed column[J]. Water Science and Technology, 2014, 70(5):895-900.
doi: 10.2166/wst.2014.310 |
[24] |
SLEIMAN N, DELUCHAT V, WAZNE M, et al. Phosphate removal from aqueous solutions using zero valent iron(ZVI):influence of solution composition and ZVI aging[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 514:1-10.
doi: 10.1016/j.colsurfa.2016.11.014 |
[25] |
SLEIMAN N, DELUCHAT V, WAZNE M, et al. Phosphate removal from aqueous solution using ZVI/sand bed reactor:behavior and mechanism[J]. Water Research, 2016, 99:56-65.
doi: 10.1016/j.watres.2016.04.054 |
[26] |
WANG J B, XU J, XIA J, et al. A kinetic study of concurrent arsenic adsorption and phosphorus release during sediment resuspension[J]. Chemical Geology, 2018, 495:67-75.
doi: 10.1016/j.chemgeo.2018.08.003 |
[27] |
赵蓉, 王妍, 杨桂英, 等. 磷输入对湖滨底泥砷形态转化及生态风险的影响[J]. 环境科学研究, 2019, 32(8):1395-1401.
ZHAO R, WANG Y, YANG G Y, et al. Effects of phosphate input on the speciation transformations and related ecological risks of arsenic in the sediment of lakeside wetland[J]. Research of Environmental Sciences, 2019, 32(8):1395-1401.
|
[28] |
SLEIMAN N, DELUCHAT V, WAZNE M, et al. Role of iron oxidation byproducts in the removal of phosphate from aqueous solution[J]. RSC Advances, 2016, 6(2):1627-1636.
doi: 10.1039/C5RA22444F |
[29] |
PHENRAT T, SALEH N, SIRK K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions[J]. Environmental Science & Technology, 2007, 41(1):284-290.
doi: 10.1021/es061349a |
[30] |
SARATHY V, TRATNYEK P G, NURMI J T, et al. Aging of iron nanoparticles in aqueous solution:effects on structure and reactivity[J]. The Journal of Physical Chemistry C, 2008, 112(7):2286-2293.
doi: 10.1021/jp0777418 |
[31] |
GROSSEAU-POUSSARD J L, PANICAUD B, PEDRAZA F, et al. Iron oxidation under the influence of phosphate thin films[J]. Journal of Applied Physics, 2003, 94(1):784-788.
doi: 10.1063/1.1579126 |
[32] |
GIACOMELLI C, SPINELLI A. A potentiodynamic and SEM study of the behaviour of iron in pH 8.9-11.0 phosphate solutions[J]. Anti-Corrosion Methods and Materials, 2004, 51(3):189-199.
doi: 10.1108/00035590410533138 |
[33] |
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449.
doi: 10.1016/j.apsusc.2007.09.063 |
[34] |
PENG X, XI B D, ZHAO Y, et al. Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment[J]. Environmental Science & Technology, 2017, 51(17):10100-10108.
doi: 10.1021/acs.est.7b02635 |
[35] |
SHAO Q Q, XU C H, WANG Y H, et al. Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen:mechanistic insights for enhanced chromate removal[J]. Water Research, 2018, 135:322-330.
doi: 10.1016/j.watres.2018.02.030 |
[36] |
DU J K, BAO J G, LU C H, et al. Reductive sequestration of chromate by hierarchical FeS@Fe0 particles[J]. Water Research, 2016, 102:73-81.
doi: 10.1016/j.watres.2016.06.009 |
1. |
张元馨,王震,卢前明,刘龙宇,穆月庭,秦华林. 利用生活垃圾焚烧飞灰制备膨胀胶凝材料的试验研究. 环境工程技术学报. 2024(02): 538-544 .
![]() | |
2. |
金弘毅,唐雪平,庄马展,龚春明,吴小海,李飞,周真明. 净水厂污泥/河道淤泥混合煅烧制备除磷材料及其除磷性能研究. 环境工程. 2023(08): 209-217 .
![]() | |
3. |
练依宁,吴红斌,蔡金水,龚斌,康得军,简志强,龚亚萍,吕茳芏. 杭锦土负载硫化零价铁的研制及除磷性能. 环境工程技术学报. 2022(01): 127-136 .
![]() | |
4. |
卿卓霖,邹天森,钱锋,卢彩彩,宋志伟,宋永会. 雪硅钙石诱导结晶法同步去除与回收污水中磷的研究. 环境工程技术学报. 2022(02): 513-519 .
![]() | |
5. |
刘涛,居小秋,郑寿荣. 氢氧化镧掺杂氧化铝去除水体磷酸盐性能研究. 环境科学研究. 2022(04): 1016-1024 .
![]() | |
6. |
武越,赵婷,金彦任,薛燕,张凌旋,李达,乔晋如,黄杨. 改性无烟煤材料的制备及其对磷的吸附回收性能. 环境工程技术学报. 2022(05): 1653-1659 .
![]() |