Citation: | QIU Wenjie, QIN Yan, GAO Pin. Research progress on the effect of heavy metal exposure on the evolution of antibiotic resistance genes in the environment[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1226-1231. doi: 10.12153/j.issn.1674-991X.20210050 |
[1] |
黄圣琳, 何势, 魏欣, 等. 污水处理厂中四环素类抗生素残留及其抗性基因污染特征研究进展[J]. 化工进展, 2015, 34(6):1779-1785.
HUANG S L, HE S, WEI X, et al. Pollution characteristics of tetracycline residues and tetracycline resistance genes in sewage treatment plants:a review[J]. Chemical Industry and Engineering Progress, 2015, 34(6):1779-1785.
|
[2] |
高品, 阮晓慧, 邱文婕, 等. 四环素胁迫对Shigella flexneri细菌四环素抗性基因抗性表达的影响过程[J]. 环境科学, 2020, 41(8):3758-3764.
doi: 10.1021/es062326z GAO P, RUAN X H, QIU W J, et al. Impact of tetracycline antibiotic on the transcriptional expression of tetracycline resistance genes in Shigella flexneri[J]. Environmental Science, 2020, 41(8):3758-3764. doi: 10.1021/es062326z
|
[3] |
YAN M T, XU C, HUANG Y M, et al. Tetracyclines,sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir,China[J]. Science of the Total Environment, 2018, 631/632:840-848.
doi: 10.1016/j.scitotenv.2018.03.085 |
[4] |
ZHANG S H, YANG G L, HOU S G, et al. Distribution of ARGs and MGEs among glacial soil,permafrost,and sediment using metagenomic analysis[J]. Environmental Pollution, 2018, 234:339-346.
doi: 10.1016/j.envpol.2017.11.031 |
[5] |
CHEN B W, YANG Y, LIANG X M, et al. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments[J]. Environmental Science & Technology, 2013, 47(22):12753-12760.
doi: 10.1021/es403818e |
[6] |
PALLECCHI L, BARTOLONI A, PARADISI F, et al. Antibiotic resistance in the absence of antimicrobial use:mechanisms and implications[J]. Expert Review of Anti-Infective Therapy, 2008, 6(5):725-732.
doi: 10.1586/14787210.6.5.725 |
[7] |
WANG F, XU M, STEDTFELD R D, et al. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome[J]. Environmental Science & Technology, 2018, 52(22):13037-13046.
doi: 10.1021/acs.est.8b04330 |
[8] |
XU M, STEDTFELD R D, WANG F, et al. Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history[J]. Science of the Total Environment, 2019, 689:1172-1180.
doi: 10.1016/j.scitotenv.2019.06.376 |
[9] |
SABATINO R, di CESARE A, DZHEMBEKOVA N, et al. Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea[J]. Marine Pollution Bulletin, 2020, 160:111635.
doi: 10.1016/j.marpolbul.2020.111635 |
[10] |
李侃竹, 高品, 王凯, 等. 污水中抗生素与重金属对红霉素抗药性基因的选择性效应[J]. 中国环境科学, 2015, 35(3):889-896.
LI K Z, GAO P, WANG K, et al. Selective pressure of antibiotics and heavy metals on erythromycin resistance genes in wastewater[J]. China Environmental Science, 2015, 35(3):889-896.
|
[11] |
LIU T K, LUN J S, ZHENG P, et al. Diversity and distribution of antibiotics and antibiotic resistance genes in seven national mangrove nature reserves,South China[J]. International Biodeterioration & Biodegradation, 2020, 153:105000.
|
[12] |
HALL M C, DUERSCHNER J, GILLEY J E, et al. Antibiotic resistance genes in swine manure slurry as affected by pit additives and facility disinfectants[J]. Science of the Total Environment, 2021, 761:143287.
doi: 10.1016/j.scitotenv.2020.143287 |
[13] |
JIA S Y, BIAN K Q, SHI P, et al. Metagenomic profiling of antibiotic resistance genes and their associations with bacterial community during multiple disinfection regimes in a full-scale drinking water treatment plant[J]. Water Research, 2020, 176:115721.
doi: 10.1016/j.watres.2020.115721 |
[14] |
ALONSO A, SÁNCHEZ P, MARTÍNEZ J L. Environmental selection of antibiotic resistance genes[J]. Environmental Microbiology, 2001, 3(1):1-9.
doi: 10.1046/j.1462-2920.2001.00161.x |
[15] |
FRAISE A P. Biocide abuse and antimicrobial resistance:a cause for concern[J]. Journal of Antimicrobial Chemotherapy, 2002, 49(1):11-12.
|
[16] |
WANG Q, MAO D Q, LUO Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4[J]. Environmental Science & Technology, 2015, 49(14):8731-8740.
doi: 10.1021/acs.est.5b01129 |
[17] |
ZHANG X J, LI J J, LI D L, et al. Silicon dioxide nanoparticles have contrasting effects on the temporal dynamics of sulfonamide and β-lactam resistance genes in soils amended with antibiotics[J]. Environmental Research Letters, 2020, 15(3):034001.
doi: 10.1088/1748-9326/ab7131 |
[18] |
CEN T, ZHANG X Y, XIE S S, et al. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms[J]. Environment International, 2020, 138:105544.
doi: 10.1016/j.envint.2020.105544 |
[19] |
CHEN X F, YIN H L, LI G Y, et al. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation:implications from oxidative stress and gene expression[J]. Water Research, 2019, 149:282-291.
doi: 10.1016/j.watres.2018.11.019 |
[20] |
LU X M, LU P Z, LIU X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil[J]. Science of the Total Environment, 2020, 709:136276.
doi: 10.1016/j.scitotenv.2019.136276 |
[21] |
XIE S S, GU A Z, CEN T, et al. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes[J]. Science of the Total Environment, 2019, 683:116-123.
doi: 10.1016/j.scitotenv.2019.05.115 |
[22] |
ZHANG J Y, BUHE C L, YU D W, et al. Ammonia stress reduces antibiotic efflux but enriches horizontal gene transfer of antibiotic resistance genes in anaerobic digestion[J]. Bioresource Technology, 2020, 295:122191.
doi: 10.1016/j.biortech.2019.122191 |
[23] |
LI M M, RAY P, TEETS C, et al. Short communication:increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries[J]. Journal of Dairy Science, 2020, 103(3):2877-2882.
doi: 10.3168/jds.2019-17453 |
[24] |
SONG J X, RENSING C, HOLM P E, et al. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil[J]. Environmental Science & Technology, 2017, 51(5):3040-3047.
doi: 10.1021/acs.est.6b05342 |
[25] |
STEPANAUSKAS R, GLENN T C, JAGOE C H, et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms[J]. Environmental Microbiology, 2006, 8(9):1510-1514.
doi: 10.1111/emi.2006.8.issue-9 |
[26] |
李婷, 吴明辉, 杨馨婷, 等. 植物与微生物对重金属的抗性机制及联合修复研究进展[J/OL]. 应用与环境生物学报, 2020.doi: 10.19675/j.cnki.1006-687x.2020.06062.
doi: 10.19675/j.cnki.1006-687x.2020.06062 LI T, WU M H, YANG X T, et al. Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms[J/OL]. Chinese Journal of Applied and Environmental Biology, 2020.doi: 10.19675/j.cnki.1006-687x.2020.06062. doi: 10.19675/j.cnki.1006-687x.2020.06062
|
[27] |
ZHANG S, WANG Y, SONG H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera[J]. Environment International, 2019, 129:478-487.
doi: 10.1016/j.envint.2019.05.054 |
[28] |
SILVER S, SCHOTTEL J, WEISS A. Bacterial resistance to toxic metals determined by extrachromosomal R factors[J]. International Biodeterioration & Biodegradation, 2001, 48(1/2/3/4):263-281.
|
[29] |
MATA M T, BAQUERO F, PÉREZ-DÍAZ J C. A multidrug efflux transporter in Listeria monocytogenes[J]. FEMS Microbiology Letters, 2000, 187(2):185-188.
doi: 10.1111/fml.2000.187.issue-2 |
[30] |
DICKEY J, PERROT V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro[J]. PLoS One, 2019, 14(1):e0209390.
doi: 10.1371/journal.pone.0209390 |
[31] |
HARRIOTT M M, NOVERR M C. Importance of Candida-bacterial polymicrobial biofilms in disease[J]. Trends in Microbiology, 2011, 19(11):557-563.
doi: 10.1016/j.tim.2011.07.004 |
[32] |
蓝素桂, 李治蓉, 苏爱秋, 等. 金黄色葡萄球菌抗生素耐药研究进展[J/OL]. 食品与发酵工业, 2020.doi: 10.13995/j.cnki.11-1802/ts.025945.
doi: 10.13995/j.cnki.11-1802/ts.025945 LAN S G, LI Z R, SU A Q, et al. Review on the antibiotic resistance in Staphylococcus aureus[J/OL]. Food and Fermentation Industries, 2020.doi: 10.13995/j.cnki.11-1802/ts.025945. doi: 10.13995/j.cnki.11-1802/ts.025945
|
[33] |
BARAN A, TARNAWSKI M. Assessment of heavy metals mobility and toxicity in contaminated sediments by sequential extraction and a battery of bioassays[J]. Ecotoxicology, 2015, 24(6):1279-1293.
doi: 10.1007/s10646-015-1499-4 |
[34] |
KE X, GUI S F, HUANG H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area,China[J]. Chemosphere, 2017, 175:473-481.
doi: 10.1016/j.chemosphere.2017.02.029 |
[35] |
REVENGA J E, CAMPBELL L M, ARRIBÉRE M A, et al. Arsenic,cobalt and chromium food web biodilution in a Patagonia mountain lake[J]. Ecotoxicology and Environmental Safety, 2012, 81:1-10.
doi: 10.1016/j.ecoenv.2012.03.014 |
[36] |
BURY N. Metal contamination in aquatic environments:science and lateral management[J]. Freshwater Biology, 2009, 54(9):2015.
doi: 10.1111/fwb.2009.54.issue-9 |
[37] |
文雅, 冷艳, 李师翁. 微生物重金属耐受性及其机制的研究进展[J]. 环境科学与技术, 2020, 43(9):79-86.
WEN Y, LENG Y, LI S W. Research progress on microbial tolerance to heavy metals and its mechanisms[J]. Environmental Science & Technology, 2020, 43(9):79-86.
|
[38] |
XUE Z, SENDAMANGALAM V R, GRUDEN C L, et al. Multiple roles of extracellular polymeric substances on resistance of biofilm and detached clusters[J]. Environmental Science & Technology, 2012, 46(24):13212-13219.
doi: 10.1021/es3031165 |
[39] |
STEWART P S. Mechanisms of antibiotic resistance in bacterial biofilms[J]. International Journal of Medical Microbiology, 2002, 292(2):107-113.
doi: 10.1078/1438-4221-00196 |
[40] |
BAKER-AUSTIN C, WRIGHT M S, STEPANAUSKAS R, et al. Co-selection of antibiotic and metal resistance[J]. Trends in Microbiology, 2006, 14(4):176-182.
doi: 10.1016/j.tim.2006.02.006 |
[41] |
陈刚, 糜祖煌, 翁幸鐾, 等. 多药耐药肺炎克雷伯菌尿液分离株检出gyrA基因新亚型[J]. 中华医院感染学杂志, 2011, 21(21):4426-4430.
CHEN G, MI Z H, WENG X B, et al. New subtype of gyrA gene detected in multidrug-resistant Klebsiella pneumoniae isolated from urine[J]. Chinese Journal of Nosocomiology, 2011, 21(21):4426-4430.
|
[42] |
CHAPMAN J S. Disinfectant resistance mechanisms,cross-resistance,and co-resistance[J]. International Biodeterioration & Biodegradation, 2003, 51(4):271-276.
|
[43] |
DICKINSON A W, POWER A, HANSEN M G, et al. Heavy metal pollution and co-selection for antibiotic resistance:a microbial palaeontology approach[J]. Environment International, 2019, 132:105117.
doi: 10.1016/j.envint.2019.105117 |
[44] |
DING J, AN X L, LASSEN S B, et al. Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans[J]. Science of the Total Environment, 2019, 683:210-215.
doi: 10.1016/j.scitotenv.2019.05.302 |
[45] |
KNAPP C W, DOLFING J, EHLERT P A I, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940[J]. Environmental Science & Technology, 2010, 44(2):580-587.
doi: 10.1021/es901221x |
[46] |
DAVIES J, DAVIES D. Origins and evolution of antibiotic resistance[J]. Microbiology and Molecular Biology Reviews, 2010, 74(3):417-433.
doi: 10.1128/MMBR.00016-10 |
[47] |
JI X L, SHEN Q H, LIU F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai;China[J]. Journal of Hazardous Materials, 2012, 235/236:178-185.
doi: 10.1016/j.jhazmat.2012.07.040 |
[48] |
LI L G, XIA Y, ZHANG T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection[J]. The ISME Journal, 2017, 11(3):651-662.
doi: 10.1038/ismej.2016.155 |
[49] |
BERG J, THORSEN M K, HOLM P E, et al. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay[J]. Environmental Science & Technology, 2010, 44(22):8724-8728.
doi: 10.1021/es101798r |
[50] |
ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3440.
|
[51] |
WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Science of the Total Environment, 2020, 717:137055.
doi: 10.1016/j.scitotenv.2020.137055 |
[52] |
HE X L, XU Y B, CHEN J L, et al. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Research, 2017, 124:39-48.
doi: 10.1016/j.watres.2017.07.048 |
[53] |
HU H W, WANG J T, LI J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology, 2016, 18(11):3896-3909.
doi: 10.1111/emi.2016.18.issue-11 |
[54] |
张淑红, 牛子文, 杨广礼. 饮用水中抗生素抗性基因与重金属关系的研究进展[J]. 现代预防医学, 2020, 47(24):4519-4522.
ZHANG S H, NIU Z W, YANG G L. Research progress on the relationship between antibiotic resistance genes and heavy metals in drinking water[J]. Modern Preventive Medicine, 2020, 47(24):4519-4522.
|
[55] |
ZHANG F L, ZHAO X X, LI Q B, et al. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil[J]. Environmental Science and Pollution Research, 2018, 25(10):9547-9555.
doi: 10.1007/s11356-018-1251-8 |
[56] |
LU J, WANG Y, JIN M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169:115229.
doi: 10.1016/j.watres.2019.115229 |
[57] |
THOMAS C M, NIELSEN K M. Mechanisms of,and barriers to,horizontal gene transfer between bacteria[J]. Nature Reviews Microbiology, 2005, 3(9):711-721.
doi: 10.1038/nrmicro1234 |
[58] |
BERG J, TOM-PETERSEN A, NYBROE O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field[J]. Letters in Applied Microbiology, 2005, 40(2):146-151.
doi: 10.1111/lam.2005.40.issue-2 |
[59] |
SEILER C, BERENDONK T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Frontiers in Microbiology, 2012, 3:399.
|
[60] |
ZHANG Y, GU A Z, CEN T, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237:74-82.
doi: 10.1016/j.envpol.2018.01.032 |
[61] |
PU Q, FAN X T, LI H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community[J]. Environmental Pollution, 2021, 268:115903.
doi: 10.1016/j.envpol.2020.115903 |