Volume 11 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
QIU Wenjie, QIN Yan, GAO Pin. Research progress on the effect of heavy metal exposure on the evolution of antibiotic resistance genes in the environment[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1226-1231. doi: 10.12153/j.issn.1674-991X.20210050
Citation: QIU Wenjie, QIN Yan, GAO Pin. Research progress on the effect of heavy metal exposure on the evolution of antibiotic resistance genes in the environment[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1226-1231. doi: 10.12153/j.issn.1674-991X.20210050

Research progress on the effect of heavy metal exposure on the evolution of antibiotic resistance genes in the environment

doi: 10.12153/j.issn.1674-991X.20210050
More Information
  • Corresponding author: GAO Pin E-mail: pingao@dhu.edu.cn
  • Received Date: 2021-02-27
  • Publish Date: 2021-11-20
  • Antibiotic resistance genes (ARGs) have been listed as an emerging contaminant in the environment. Their pollution dissemination and environmental evolution have become the attentive focuses and research hotspots in the field of ecological environment. Due to their non-degradability, heavy metals can stably exist in the environment and have long-term bioavailability, posing a continuous selection pressure on ARGs. The different resistant mechanisms of bacteria to antibiotics and heavy metals, as well as their synergistic effects were summarized. The influence of heavy metals on the environmental behaviors including gene abundance and horizontal transfer of ARGs was emphatically discussed. The results showed that a variety of heavy metals and their compounds would affect the abundance and horizontal transfer of ARGs. Different types and concentrations of heavy metals may have different effects. Heavy metals affected the horizontal transfer of ARGs mainly by affecting the secretion of EPS, changing the cells permeability, and affecting genes’ expression, etc. Different types of heavy metals could affect the horizontal transfer of ARGs in different ways. Although there had been many research reports on the impact of heavy metals on the environmental behavior process of ARGs, the internal mechanism of the influence of heavy metals on ARGs and the synergistic selection effect of heavy metals on the abundance and horizontal transfer of ARGs in different environmental media need to be further studied.

     

  • loading
  • [1]
    黄圣琳, 何势, 魏欣, 等. 污水处理厂中四环素类抗生素残留及其抗性基因污染特征研究进展[J]. 化工进展, 2015, 34(6):1779-1785.

    HUANG S L, HE S, WEI X, et al. Pollution characteristics of tetracycline residues and tetracycline resistance genes in sewage treatment plants:a review[J]. Chemical Industry and Engineering Progress, 2015, 34(6):1779-1785.
    [2]
    高品, 阮晓慧, 邱文婕, 等. 四环素胁迫对Shigella flexneri细菌四环素抗性基因抗性表达的影响过程[J]. 环境科学, 2020, 41(8):3758-3764.
    doi: 10.1021/es062326z

    GAO P, RUAN X H, QIU W J, et al. Impact of tetracycline antibiotic on the transcriptional expression of tetracycline resistance genes in Shigella flexneri[J]. Environmental Science, 2020, 41(8):3758-3764. doi: 10.1021/es062326z
    [3]
    YAN M T, XU C, HUANG Y M, et al. Tetracyclines,sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir,China[J]. Science of the Total Environment, 2018, 631/632:840-848.
    doi: 10.1016/j.scitotenv.2018.03.085
    [4]
    ZHANG S H, YANG G L, HOU S G, et al. Distribution of ARGs and MGEs among glacial soil,permafrost,and sediment using metagenomic analysis[J]. Environmental Pollution, 2018, 234:339-346.
    doi: 10.1016/j.envpol.2017.11.031
    [5]
    CHEN B W, YANG Y, LIANG X M, et al. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments[J]. Environmental Science & Technology, 2013, 47(22):12753-12760.
    doi: 10.1021/es403818e
    [6]
    PALLECCHI L, BARTOLONI A, PARADISI F, et al. Antibiotic resistance in the absence of antimicrobial use:mechanisms and implications[J]. Expert Review of Anti-Infective Therapy, 2008, 6(5):725-732.
    doi: 10.1586/14787210.6.5.725
    [7]
    WANG F, XU M, STEDTFELD R D, et al. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome[J]. Environmental Science & Technology, 2018, 52(22):13037-13046.
    doi: 10.1021/acs.est.8b04330
    [8]
    XU M, STEDTFELD R D, WANG F, et al. Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history[J]. Science of the Total Environment, 2019, 689:1172-1180.
    doi: 10.1016/j.scitotenv.2019.06.376
    [9]
    SABATINO R, di CESARE A, DZHEMBEKOVA N, et al. Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea[J]. Marine Pollution Bulletin, 2020, 160:111635.
    doi: 10.1016/j.marpolbul.2020.111635
    [10]
    李侃竹, 高品, 王凯, 等. 污水中抗生素与重金属对红霉素抗药性基因的选择性效应[J]. 中国环境科学, 2015, 35(3):889-896.

    LI K Z, GAO P, WANG K, et al. Selective pressure of antibiotics and heavy metals on erythromycin resistance genes in wastewater[J]. China Environmental Science, 2015, 35(3):889-896.
    [11]
    LIU T K, LUN J S, ZHENG P, et al. Diversity and distribution of antibiotics and antibiotic resistance genes in seven national mangrove nature reserves,South China[J]. International Biodeterioration & Biodegradation, 2020, 153:105000.
    [12]
    HALL M C, DUERSCHNER J, GILLEY J E, et al. Antibiotic resistance genes in swine manure slurry as affected by pit additives and facility disinfectants[J]. Science of the Total Environment, 2021, 761:143287.
    doi: 10.1016/j.scitotenv.2020.143287
    [13]
    JIA S Y, BIAN K Q, SHI P, et al. Metagenomic profiling of antibiotic resistance genes and their associations with bacterial community during multiple disinfection regimes in a full-scale drinking water treatment plant[J]. Water Research, 2020, 176:115721.
    doi: 10.1016/j.watres.2020.115721
    [14]
    ALONSO A, SÁNCHEZ P, MARTÍNEZ J L. Environmental selection of antibiotic resistance genes[J]. Environmental Microbiology, 2001, 3(1):1-9.
    doi: 10.1046/j.1462-2920.2001.00161.x
    [15]
    FRAISE A P. Biocide abuse and antimicrobial resistance:a cause for concern[J]. Journal of Antimicrobial Chemotherapy, 2002, 49(1):11-12.
    [16]
    WANG Q, MAO D Q, LUO Y. Ionic liquid facilitates the conjugative transfer of antibiotic resistance genes mediated by plasmid RP4[J]. Environmental Science & Technology, 2015, 49(14):8731-8740.
    doi: 10.1021/acs.est.5b01129
    [17]
    ZHANG X J, LI J J, LI D L, et al. Silicon dioxide nanoparticles have contrasting effects on the temporal dynamics of sulfonamide and β-lactam resistance genes in soils amended with antibiotics[J]. Environmental Research Letters, 2020, 15(3):034001.
    doi: 10.1088/1748-9326/ab7131
    [18]
    CEN T, ZHANG X Y, XIE S S, et al. Preservatives accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes via differential mechanisms[J]. Environment International, 2020, 138:105544.
    doi: 10.1016/j.envint.2020.105544
    [19]
    CHEN X F, YIN H L, LI G Y, et al. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation:implications from oxidative stress and gene expression[J]. Water Research, 2019, 149:282-291.
    doi: 10.1016/j.watres.2018.11.019
    [20]
    LU X M, LU P Z, LIU X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil[J]. Science of the Total Environment, 2020, 709:136276.
    doi: 10.1016/j.scitotenv.2019.136276
    [21]
    XIE S S, GU A Z, CEN T, et al. The effect and mechanism of urban fine particulate matter (PM2.5) on horizontal transfer of plasmid-mediated antimicrobial resistance genes[J]. Science of the Total Environment, 2019, 683:116-123.
    doi: 10.1016/j.scitotenv.2019.05.115
    [22]
    ZHANG J Y, BUHE C L, YU D W, et al. Ammonia stress reduces antibiotic efflux but enriches horizontal gene transfer of antibiotic resistance genes in anaerobic digestion[J]. Bioresource Technology, 2020, 295:122191.
    doi: 10.1016/j.biortech.2019.122191
    [23]
    LI M M, RAY P, TEETS C, et al. Short communication:increasing temperature and pH can facilitate reductions of cephapirin and antibiotic resistance genes in dairy manure slurries[J]. Journal of Dairy Science, 2020, 103(3):2877-2882.
    doi: 10.3168/jds.2019-17453
    [24]
    SONG J X, RENSING C, HOLM P E, et al. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil[J]. Environmental Science & Technology, 2017, 51(5):3040-3047.
    doi: 10.1021/acs.est.6b05342
    [25]
    STEPANAUSKAS R, GLENN T C, JAGOE C H, et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms[J]. Environmental Microbiology, 2006, 8(9):1510-1514.
    doi: 10.1111/emi.2006.8.issue-9
    [26]
    李婷, 吴明辉, 杨馨婷, 等. 植物与微生物对重金属的抗性机制及联合修复研究进展[J/OL]. 应用与环境生物学报, 2020.doi: 10.19675/j.cnki.1006-687x.2020.06062.
    doi: 10.19675/j.cnki.1006-687x.2020.06062

    LI T, WU M H, YANG X T, et al. Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms[J/OL]. Chinese Journal of Applied and Environmental Biology, 2020.doi: 10.19675/j.cnki.1006-687x.2020.06062. doi: 10.19675/j.cnki.1006-687x.2020.06062
    [27]
    ZHANG S, WANG Y, SONG H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera[J]. Environment International, 2019, 129:478-487.
    doi: 10.1016/j.envint.2019.05.054
    [28]
    SILVER S, SCHOTTEL J, WEISS A. Bacterial resistance to toxic metals determined by extrachromosomal R factors[J]. International Biodeterioration & Biodegradation, 2001, 48(1/2/3/4):263-281.
    [29]
    MATA M T, BAQUERO F, PÉREZ-DÍAZ J C. A multidrug efflux transporter in Listeria monocytogenes[J]. FEMS Microbiology Letters, 2000, 187(2):185-188.
    doi: 10.1111/fml.2000.187.issue-2
    [30]
    DICKEY J, PERROT V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro[J]. PLoS One, 2019, 14(1):e0209390.
    doi: 10.1371/journal.pone.0209390
    [31]
    HARRIOTT M M, NOVERR M C. Importance of Candida-bacterial polymicrobial biofilms in disease[J]. Trends in Microbiology, 2011, 19(11):557-563.
    doi: 10.1016/j.tim.2011.07.004
    [32]
    蓝素桂, 李治蓉, 苏爱秋, 等. 金黄色葡萄球菌抗生素耐药研究进展[J/OL]. 食品与发酵工业, 2020.doi: 10.13995/j.cnki.11-1802/ts.025945.
    doi: 10.13995/j.cnki.11-1802/ts.025945

    LAN S G, LI Z R, SU A Q, et al. Review on the antibiotic resistance in Staphylococcus aureus[J/OL]. Food and Fermentation Industries, 2020.doi: 10.13995/j.cnki.11-1802/ts.025945. doi: 10.13995/j.cnki.11-1802/ts.025945
    [33]
    BARAN A, TARNAWSKI M. Assessment of heavy metals mobility and toxicity in contaminated sediments by sequential extraction and a battery of bioassays[J]. Ecotoxicology, 2015, 24(6):1279-1293.
    doi: 10.1007/s10646-015-1499-4
    [34]
    KE X, GUI S F, HUANG H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area,China[J]. Chemosphere, 2017, 175:473-481.
    doi: 10.1016/j.chemosphere.2017.02.029
    [35]
    REVENGA J E, CAMPBELL L M, ARRIBÉRE M A, et al. Arsenic,cobalt and chromium food web biodilution in a Patagonia mountain lake[J]. Ecotoxicology and Environmental Safety, 2012, 81:1-10.
    doi: 10.1016/j.ecoenv.2012.03.014
    [36]
    BURY N. Metal contamination in aquatic environments:science and lateral management[J]. Freshwater Biology, 2009, 54(9):2015.
    doi: 10.1111/fwb.2009.54.issue-9
    [37]
    文雅, 冷艳, 李师翁. 微生物重金属耐受性及其机制的研究进展[J]. 环境科学与技术, 2020, 43(9):79-86.

    WEN Y, LENG Y, LI S W. Research progress on microbial tolerance to heavy metals and its mechanisms[J]. Environmental Science & Technology, 2020, 43(9):79-86.
    [38]
    XUE Z, SENDAMANGALAM V R, GRUDEN C L, et al. Multiple roles of extracellular polymeric substances on resistance of biofilm and detached clusters[J]. Environmental Science & Technology, 2012, 46(24):13212-13219.
    doi: 10.1021/es3031165
    [39]
    STEWART P S. Mechanisms of antibiotic resistance in bacterial biofilms[J]. International Journal of Medical Microbiology, 2002, 292(2):107-113.
    doi: 10.1078/1438-4221-00196
    [40]
    BAKER-AUSTIN C, WRIGHT M S, STEPANAUSKAS R, et al. Co-selection of antibiotic and metal resistance[J]. Trends in Microbiology, 2006, 14(4):176-182.
    doi: 10.1016/j.tim.2006.02.006
    [41]
    陈刚, 糜祖煌, 翁幸鐾, 等. 多药耐药肺炎克雷伯菌尿液分离株检出gyrA基因新亚型[J]. 中华医院感染学杂志, 2011, 21(21):4426-4430.

    CHEN G, MI Z H, WENG X B, et al. New subtype of gyrA gene detected in multidrug-resistant Klebsiella pneumoniae isolated from urine[J]. Chinese Journal of Nosocomiology, 2011, 21(21):4426-4430.
    [42]
    CHAPMAN J S. Disinfectant resistance mechanisms,cross-resistance,and co-resistance[J]. International Biodeterioration & Biodegradation, 2003, 51(4):271-276.
    [43]
    DICKINSON A W, POWER A, HANSEN M G, et al. Heavy metal pollution and co-selection for antibiotic resistance:a microbial palaeontology approach[J]. Environment International, 2019, 132:105117.
    doi: 10.1016/j.envint.2019.105117
    [44]
    DING J, AN X L, LASSEN S B, et al. Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans[J]. Science of the Total Environment, 2019, 683:210-215.
    doi: 10.1016/j.scitotenv.2019.05.302
    [45]
    KNAPP C W, DOLFING J, EHLERT P A I, et al. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940[J]. Environmental Science & Technology, 2010, 44(2):580-587.
    doi: 10.1021/es901221x
    [46]
    DAVIES J, DAVIES D. Origins and evolution of antibiotic resistance[J]. Microbiology and Molecular Biology Reviews, 2010, 74(3):417-433.
    doi: 10.1128/MMBR.00016-10
    [47]
    JI X L, SHEN Q H, LIU F, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai;China[J]. Journal of Hazardous Materials, 2012, 235/236:178-185.
    doi: 10.1016/j.jhazmat.2012.07.040
    [48]
    LI L G, XIA Y, ZHANG T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection[J]. The ISME Journal, 2017, 11(3):651-662.
    doi: 10.1038/ismej.2016.155
    [49]
    BERG J, THORSEN M K, HOLM P E, et al. Cu exposure under field conditions coselects for antibiotic resistance as determined by a novel cultivation-independent bacterial community tolerance assay[J]. Environmental Science & Technology, 2010, 44(22):8724-8728.
    doi: 10.1021/es101798r
    [50]
    ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3440.
    [51]
    WANG Q, LIU L, HOU Z L, et al. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms[J]. Science of the Total Environment, 2020, 717:137055.
    doi: 10.1016/j.scitotenv.2020.137055
    [52]
    HE X L, XU Y B, CHEN J L, et al. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Research, 2017, 124:39-48.
    doi: 10.1016/j.watres.2017.07.048
    [53]
    HU H W, WANG J T, LI J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology, 2016, 18(11):3896-3909.
    doi: 10.1111/emi.2016.18.issue-11
    [54]
    张淑红, 牛子文, 杨广礼. 饮用水中抗生素抗性基因与重金属关系的研究进展[J]. 现代预防医学, 2020, 47(24):4519-4522.

    ZHANG S H, NIU Z W, YANG G L. Research progress on the relationship between antibiotic resistance genes and heavy metals in drinking water[J]. Modern Preventive Medicine, 2020, 47(24):4519-4522.
    [55]
    ZHANG F L, ZHAO X X, LI Q B, et al. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil[J]. Environmental Science and Pollution Research, 2018, 25(10):9547-9555.
    doi: 10.1007/s11356-018-1251-8
    [56]
    LU J, WANG Y, JIN M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169:115229.
    doi: 10.1016/j.watres.2019.115229
    [57]
    THOMAS C M, NIELSEN K M. Mechanisms of,and barriers to,horizontal gene transfer between bacteria[J]. Nature Reviews Microbiology, 2005, 3(9):711-721.
    doi: 10.1038/nrmicro1234
    [58]
    BERG J, TOM-PETERSEN A, NYBROE O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field[J]. Letters in Applied Microbiology, 2005, 40(2):146-151.
    doi: 10.1111/lam.2005.40.issue-2
    [59]
    SEILER C, BERENDONK T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Frontiers in Microbiology, 2012, 3:399.
    [60]
    ZHANG Y, GU A Z, CEN T, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237:74-82.
    doi: 10.1016/j.envpol.2018.01.032
    [61]
    PU Q, FAN X T, LI H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community[J]. Environmental Pollution, 2021, 268:115903.
    doi: 10.1016/j.envpol.2020.115903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(939) PDF Downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return