Citation: | LIAN Y N,WU H B,CAI J S,et al.Preparation of Hangjin clay-supported sulfidated zero-valent iron and its performance on phosphate removal[J].Journal of Environmental Engineering Technology,2022,12(1):127-136 doi: 10.12153/j.issn.1674-991X.20210137 |
[1] |
VENKITESHWARAN K, MCNAMARA P J, MAYER B K. Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery[J]. Science of the Total Environment,2018,644:661-674. doi: 10.1016/j.scitotenv.2018.06.369
|
[2] |
CHEN L, LI Y Z, SUN Y B, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability[J]. Chemical Engineering Journal,2019,360:342-348. doi: 10.1016/j.cej.2018.11.234
|
[3] |
REN J, LI N, WEI H, et al. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant[J]. Water Research,2020,170:115361. doi: 10.1016/j.watres.2019.115361
|
[4] |
简志强, 周高婷, 龚斌, 等.微米零价铁去除磷酸盐效果与机理研究[J]. 环境工程技术学报,2021,11(5):927-934. doi: 10.12153/j.issn.1674-991X.20210027
JIAN Z Q, ZHOU G T, GONG B, et al. Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism[J]. Journal of Environmental Engineering Technology,2021,11(5):927-934. doi: 10.12153/j.issn.1674-991X.20210027
|
[5] |
PENG X, XI B D, ZHAO Y, et al. Effect of arsenic on the formation and adsorption property of ferric hydroxide precipitates in ZVI treatment[J]. Environmental Science & Technology,2017,51(17):10100-10108.
|
[6] |
WANG H Y, ZOU Z C, XIAO X L, et al. Reduction of highly concentrated phosphate from aqueous solution using pectin-nanoscale zerovalent iron (PNZVI)[J]. Water Science and Technology,2016,73(11):2689-2696. doi: 10.2166/wst.2016.106
|
[7] |
ZHANG Q, LIU H B, CHEN T H, et al. The synthesis of NZVI and its application to the removal of phosphate from aqueous solutions[J]. Water, Air, & Soil Pollution,2017,228(9):1-10.
|
[8] |
MAHMOUD A S, MOSTAFA M K, NASR M. Regression model, artificial intelligence, and cost estimation for phosphate adsorption using encapsulated nanoscale zero-valent iron[J]. Separation Science and Technology,2019,54(1):13-26. doi: 10.1080/01496395.2018.1504799
|
[9] |
SONG S K, SU Y M, ADELEYE A S, et al. Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal[J]. Applied Catalysis B:Environmental,2017,201:211-220. doi: 10.1016/j.apcatb.2016.07.055
|
[10] |
BIN Q, LIN B, ZHU K, et al. Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite[J]. Journal of Environmental Sciences,2020,88:90-102. doi: 10.1016/j.jes.2019.08.011
|
[11] |
LI Y J, ZHAO X G, YAN Y, et al. Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): performance, mechanisms, and the role of sulfur species[J]. Chemical Engineering Journal,2019,376:121302. doi: 10.1016/j.cej.2019.03.178
|
[12] |
RAYAROTH M P, PRASANTHKUMAR K P, KANG Y G, et al. Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron: citric acid system[J]. Chemical Engineering Journal,2020,382:122828. doi: 10.1016/j.cej.2019.122828
|
[13] |
WANG Y H, SHAO Q Q, HUANG S S, et al. High performance and simultaneous sequestration of Cr(Ⅵ) and Sb(Ⅲ) by sulfidated zerovalent iron[J]. Journal of Cleaner Production,2018,191:436-444. doi: 10.1016/j.jclepro.2018.04.217
|
[14] |
MA F F, ZHAO B W, DIAO J R, et al. Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron[J]. RSC Advances,2020,10(64):39217-39225. doi: 10.1039/D0RA07391A
|
[15] |
蔡金水, 康得军, 杨天学, 等.铁改性杭锦土吸附剂对水中砷的去除研究[J]. 环境科学研究,2021,34(2):346-355.
CAI J S, KANG D J, YANG T X, et al. Removal of arsenic from water by iron modified Hangjin clay adsorbent[J]. Research of Environmental Sciences,2021,34(2):346-355.
|
[16] |
LI X G, ZHAO Y, XI B D, et al. Removal of nitrobenzene by immobilized nanoscale zero-valent iron: effect of clay support and efficiency optimization[J]. Applied Surface Science,2016,370:260-269. doi: 10.1016/j.apsusc.2016.01.141
|
[17] |
李晓光. 杭锦土负载纳米零价铁的研制及其去除典型污染物效能与机理研究[R]. 北京: 北京师范大学, 2016.
|
[18] |
李春侠. 负载型硫化纳米零价铁去除水中As(Ⅲ)和Cu(Ⅱ)的研究[D]. 武汉: 武汉科技大学, 2019.
|
[19] |
NAGOYA S, NAKAMICHI S, KAWASE Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron: a novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions[J]. Separation and Purification Technology,2019,218:120-129. doi: 10.1016/j.seppur.2019.02.042
|
[20] |
LI X G, ZHAO Y, XI B D, et al. Decolorization of methyl orange by a new clay-supported nanoscale zero-valent iron: synergetic effect, efficiency optimization and mechanism[J]. Journal of Environmental Sciences,2017,52:8-17. doi: 10.1016/j.jes.2016.03.022
|
[21] |
KIM E J, KIM J H, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. ACS Applied Materials & Interfaces,2011,3(5):1457-1462.
|
[22] |
TURCIO-ORTEGA D, FAN D M, TRATNYEK P G, et al. Reactivity of Fe/FeS nanoparticles: electrolyte composition effects on corrosion electrochemistry[J]. Environmental Science & Technology,2012,46(22):12484-12492.
|
[23] |
XU B D, LI D C, QIAN T T, et al. Boosting the activity and environmental stability of nanoscale zero-valent iron by montmorillonite supporting and sulfidation treatment[J]. Chemical Engineering Journal,2020,387:124063. doi: 10.1016/j.cej.2020.124063
|
[24] |
刘文芳, 赵颖, 蔡亚君, 等.杭锦土负载纳米零价铁对水中甲基橙的脱色研究[J]. 工业水处理,2015,35(12):34-39. doi: 10.11894/1005-829x.2015.35(12).034
LIU W F, ZHAO Y, CAI Y J, et al. Study on the decolorization of methyl orange in aqueous solution using Hangjin clay-supported nanoscale zero-valent iron[J]. Industrial Water Treatment,2015,35(12):34-39. doi: 10.11894/1005-829x.2015.35(12).034
|
[25] |
王亚浩, 邵欠欠, 张练, 等.膨润土负载硫化纳米零价铁去除对硝基苯酚的研究[J]. 环境污染与防治,2019,41(3):329-333.
WANG Y H, SHAO Q Q, ZHANG L, et al. The removal of p-nitrophenol by sulfidated nano-zero valent iron supported by bentonite[J]. Environmental Pollution & Control,2019,41(3):329-333.
|
[26] |
PANG Z H, YAN M Y, JIA X S, et al. Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: preparation, characterization and influence factors[J]. Journal of Environmental Sciences,2014,26(2):483-491. doi: 10.1016/S1001-0742(13)60419-2
|
[27] |
LIU W, AI Z H, CAO M H, et al. Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core-shell nanowires[J]. Applied Catalysis B:Environmental,2014,150/151:1-11. doi: 10.1016/j.apcatb.2013.11.034
|
[28] |
DONG J, ZHAO Y S, ZHAO R, et al. Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron[J]. Journal of Environmental Sciences,2010,22(11):1741-1747. doi: 10.1016/S1001-0742(09)60314-4
|
[29] |
BOPARAI H K, JOSEPH M, O’CARROLL D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials,2011,186(1):458-465. ◇ doi: 10.1016/j.jhazmat.2010.11.029
|