Volume 12 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LI K,WANG J L,LIN H J,et al.Study on the influencing factors of emptying time of bioretention facilities[J].Journal of Environmental Engineering Technology,2022,12(1):240-247 doi: 10.12153/j.issn.1674-991X.20210156
Citation: LI K,WANG J L,LIN H J,et al.Study on the influencing factors of emptying time of bioretention facilities[J].Journal of Environmental Engineering Technology,2022,12(1):240-247 doi: 10.12153/j.issn.1674-991X.20210156

Study on the influencing factors of emptying time of bioretention facilities

doi: 10.12153/j.issn.1674-991X.20210156
  • Received Date: 2021-04-28
  • Bioretention facilities are one of the measures widely used in sponge city construction in China. During the design, operation and maintenance of bioretention facilities, the emptying time has an important influence on the total runoff volume control efficiency and plant growth. However, there is a lack of systematic research on the influencing factors of emptying time. The effects of storage-layer height, rainfall interval, submerged-area height and structure type on the emptying time were investigated via laboratory experiments. The results showed that under the test conditions, the discharge time of the storage layer of different structure types of bioretention facilities was 10-140 min, and the complete discharge time was 6-47 h. The emptying time of the storage layer increased with the increase of the storage-layer water depth and the submerged-area height, and decreased with the increase of the rainfall interval. The emptying time of the storage layer water was affected most significantly by the storage height. The total emptying time increased with the increase of water storage water depth and rainfall interval, and decreased with the increase of submerged-area height. The rainfall interval had the greatest effect on the total emptying time. The research results could provide technical support for the design and optimization of bioretention facilities in the process of sponge city construction.

     

  • loading
  • [1]
    北京市规划和自然资源委员会. 海绵城市建设设计标准: DB11/T 1743—2020[S]. 北京: 中国标准出版社, 2020.
    [2]
    梁小光, 魏忠庆, 上官海东, 等.海绵城市建设中生物滞留设施排空时间研究[J]. 给水排水,2018,54(11):26-30. doi: 10.3969/j.issn.1002-8471.2018.11.004

    LIANG X G, WEI Z Q, SHANGGUAN H D, et al. Research on the emptying time of biological detention facility in sponge city construction[J]. Water & Wastewater Engineering,2018,54(11):26-30. doi: 10.3969/j.issn.1002-8471.2018.11.004
    [3]
    马越, 胡志平, 姬国强, 等.湿陷性黄土地区海绵城市建设雨水渗蓄风险防控若干问题探讨[J]. 给水排水,2020,56(9):70-77.

    MA Y, HU Z P, JI G Q, et al. Discussion on risk control of stormwater infiltration and detention for sponge city construction in collapsible loess area[J]. Water & Wastewater Engineering,2020,56(9):70-77.
    [4]
    杨庆华, 杨乾, 唐雪芹. 基于低影响开发策略的雨水调蓄容积取值计算[C]//《环境工程》2018年全国学术年会论文集(下册).北京: 《环境工程》编辑部, 2018: 264-268.
    [5]
    唐雪芹. 城市道路生物滞留带蓄渗效应研究[D]. 成都: 西南交通大学, 2018.
    [6]
    住房和城乡建设部. 城镇内涝防治技术规范: GB 51222—2017[S]. 北京: 中国计划出版社, 2017.
    [7]
    GREG H, REBECCA C S, BRAIN V W. Draft district of Columbia stormwater management guidebook[R]. Ellicott City: Center for Watershed Protection, 2013.
    [8]
    BLICK S A, KELLY F, SKUPIEN J J. New Jersey stormwater best management practices manual[R]. Trenton:New Jersey:New Jersey Department of Environmental Protection, 2004.
    [9]
    MEAN P E, EFFICIENCIES B M P P R. Pennsylvania stormwater best management practices manual[R]. Harrisburg:Pennsylvania Department of Environmental Protection, 2006.
    [10]
    Center for Watershed Protection. New York State stormwater management design manual[R]. New York:New York State Department of Environmental Conservation, 2003.
    [11]
    Minnesota Stormwater Steering Committee. The Minnesota stormwater manual[R]. Saint Paul:Minnesota Pollution Control Agency, 2005.
    [12]
    JANIS B,ANDY B,THOMAS C.Low impact development manual for Michigan:a design guide for implementers and reviewers[M]. Detroit:Southeast Michigan Council of Governments (SEMCOG),2008.
    [13]
    NICK L, JEFF D, JOHN M. Maine Stormwater Management Design Manual[R]. Augusta:Maine Department of Environmental Protection, 2016.
    [14]
    CHENG M S, ZHEN J X, SHOEMAKER L. BMP decision support system for evaluating stormwater management alternatives[J]. Frontiers of Environmental Science & Engineering in China,2009,3(4):453-463.
    [15]
    Charlotte-Mecklenburg Storm Water Services.Charlotte-Mecklenburg BMP design manual[R].Raleigh:North Carolina Department of Environment and Natural Resources (NCDENR),2013.
    [16]
    KASPARI P, ALLEN S. Environmentally sound approaches for stormwater management on Pacific Island Nations[C]//World Environmental and Water Resources Congress 2008, Honolulu, Hawaii, USA: American Society of Civil Engineers, 2008: 1-11.
    [17]
    HAUBNER S M. Georgia stormwater management manual[R]. Atlanta:Georgia Institute of Technology, 2001.
    [18]
    Connecticut Department of Energy and Environmental Protection (CDEEP). Connecticut stormwater quality manual[R]. Hardford: CDEEP, 2004.
    [19]
    Clean Water Program’s Management Committee.Clean water program Alameda County[R/OL].2019.[2021-05-10].https://www.cleanwaterprogram.org/c3-guidance-table.html.
    [20]
    Urban Drainage and Flood Control District(UDFCD). Urban storm drainage criteria manual: volume 3: stormwater quality[R]. Washington DC: Environmental Protection Agency, 2018.
    [21]
    IOWA Department of Natural Resources. Iowa stormwater management manual[R].Des Moines: IOWA Department of Environmental Protection, 2007.
    [22]
    冉阳, 付峥嵘, 马满英, 等.改良型生物滞留池在海绵城市雨水处理中的研究与应用[J]. 环境工程技术学报,2021,11(1):173-180. doi: 10.12153/j.issn.1674-991X.20200094

    RAN Y, FU Z R, MA M Y, et al. Research and application of amended bioretention tank in rainwater treatment of sponge city[J]. Journal of Environmental Engineering Technology,2021,11(1):173-180. doi: 10.12153/j.issn.1674-991X.20200094
    [23]
    谢瑶. 重庆市海绵城市建设技术模式研究[D]. 重庆: 重庆大学, 2016.
    [24]
    林宏军, 王建龙, 赵梦圆, 等.倒置生物滞留技术水量水质控制效果研究[J]. 水利水电技术,2019,50(6):11-17.

    LIN H J, WANG J L, ZHAO M Y, et al. Study on water quantity and water quality control effect of inverted bioretention technology[J]. Water Resources and Hydropower Engineering,2019,50(6):11-17.
    [25]
    仇付国, 王珂, 李林彬, 等.滞留时间和进水有机物对生物滞留系统除氮的影响[J]. 科学技术与工程,2018,18(4):197-202. doi: 10.3969/j.issn.1671-1815.2018.04.031

    QIU F G, WANG K, LI B B, et al. Effect of retention time and organic matter on the nitrogen removal by bioretention[J]. Science Technology and Engineering,2018,18(4):197-202. doi: 10.3969/j.issn.1671-1815.2018.04.031
    [26]
    刘霞, 张光灿, 李雪蕾, 等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J]. 水土保持学报,2004,18(6):1-5. doi: 10.3321/j.issn:1009-2242.2004.06.001

    LIU X, ZHANG G C, LI X L, et al. Characteristics of soil infiltration and water-holding of different forest vegetation in ecological rehabilitation of small watershed[J]. Journal of Soil and Water Conservation,2004,18(6):1-5. doi: 10.3321/j.issn:1009-2242.2004.06.001
    [27]
    郭雷. 林灌草根系通道对土壤水分入渗的影响研究[D]. 咸阳: 西北农林科技大学, 2020.
    [28]
    LUO W Z, LI J H, SONG L, et al. Effects of vegetation on the hydraulic properties of soil covers: four-years field experiments in Southern China[J]. Rhizosphere,2020,16:100272. ⊗ doi: 10.1016/j.rhisph.2020.100272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(8)

    Article Metrics

    Article Views(449) PDF Downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return