Volume 12 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
HAO G Z,LU B H,XU L,et al.Analysis of DOM composition, the formation potential of trihalomethanes and its removal from water source of Z City in winter[J].Journal of Environmental Engineering Technology,2022,12(1):38-45 doi: 10.12153/j.issn.1674-991X.20210158
Citation: HAO G Z,LU B H,XU L,et al.Analysis of DOM composition, the formation potential of trihalomethanes and its removal from water source of Z City in winter[J].Journal of Environmental Engineering Technology,2022,12(1):38-45 doi: 10.12153/j.issn.1674-991X.20210158

Analysis of DOM composition, the formation potential of trihalomethanes and its removal from water source of Z City in winter

doi: 10.12153/j.issn.1674-991X.20210158
  • Received Date: 2021-05-06
  • Taking the water source of Z City in winter as the research object, the relationship between the fluorescence composition, source, composition, humification degree of dissolved organic matter (DOM) and the generation potential of trihalomethanes (THMs) was investigated by the combined use of 3D fluorescence spectroscopy, resin separation and classification, and UV-vis spectrophotometry. The results showed that a total of three fluorescence peaks were resolved by 3D fluorescence spectra: protein-like material (C1), ultraviolet humic acid material (C2) and terrestrial/artificial humic material (C3) in the raw water of the water source. The three fluorescence peaks in Q River and X River were 4.50, 10.75, 7.56 and 1.33, 9.24, 7.56, respectively. The fluorescence source index (FI) and biogenic index (BIX) both reflected that DOM of the water source was mainly terrestrial source input. In addition, after the chemical classification of DOM of the water source, the concentrations of five components were as follows: hydrophobic organic acids (HoA) > hydrophilic substances (HiM) > hydrophobic neutral organic substances (HoN) > hydrophobic alkaline organic substances (HoB) > weak hydrophobic acidic organic substances (wHoA). CHCl 3, CHClBr2 and CHBrCl2 were produced by chlorination of Q River raw water, and CHCl3 and CHBrCl2 were produced by chlorination of X River, indicating that the river water was not significantly polluted by industry. At the same time, the study of disinfection by-product THMs generation potential was conducted on each chemically graded component of DOM of the water source, and it was found that the main precursors of THMs were HoA and HiM, and HoA, HiM and wHoA had a strong ability to generate THMs, which was consistent with SUVA values of UV absorption characteristics, indicating that the ability to generate THMs was also strong. The industrial polyaluminium chloride should be selected to enhance coagulation for removal.

     

  • loading
  • [1]
    CHOW A T, DAHLGREN R A, HARRISON J A. Watershed sources of disinfection byproduct precursors in the Sacramento and San Joaquin Rivers, California[J]. Environmental Science & Technology,2007,41(22):7645-7652.
    [2]
    刘艳芳, 王启山, 岳尚超, 等.基于疏水性能及相对分子质量分析消毒副产物前体物[J]. 给水排水,2011,47(7):128-132. doi: 10.3969/j.issn.1002-8471.2011.07.035

    LIU Y F, WANG Q S, YUE S C, et al. Analysis of disinfection by-product precursors based on hydrophobicity and molecular weight[J]. Water & Wastewater Engineering,2011,47(7):128-132. doi: 10.3969/j.issn.1002-8471.2011.07.035
    [3]
    RAHMAN M B, DRISCOLL T, COWIE C, et al. Disinfection by-products in drinking water and colorectal cancer: a meta-analysis[J]. International Journal of Epidemiology,2010,39(3):733-745. doi: 10.1093/ije/dyp371
    [4]
    BRUGGER A, REITNER B, KOLAR I, et al. Seasonal and spatial distribution of dissolved and particulate organic carbon and bacteria in the bank of an impounding reservoir on the Enns River, Austria[J]. Freshwater Biology,2001,46(8):997-1016. doi: 10.1046/j.1365-2427.2001.00743.x
    [5]
    NGUYEN H V M, SHIN J K, HUR J. Multivariate analysis for spatial distribution of dissolved organic matters in a large river-type dam reservoir[J]. Environmental Monitoring and Assessment,2011,183(1/2/3/4):425-436.
    [6]
    文杨. 冰封期城市河流DOM结构特性及分布特征[D]. 沈阳: 辽宁大学, 2014.
    [7]
    康跃惠, 宫正宇, 王子健, 等.官厅水库及永定河水中挥发性有机物分布规律[J]. 环境科学学报,2001,21(3):338-343. doi: 10.3321/j.issn:0253-2468.2001.03.017

    KANG Y H, GONG Z Y, WANG Z J, et al. The study of VOCs in Guanting Reservoir and Yongdinghe River[J]. Acta Scientiae Circumstantiae,2001,21(3):338-343. doi: 10.3321/j.issn:0253-2468.2001.03.017
    [8]
    乔春光, 魏群山, 王东升, 等.典型南方水源溶解性有机物分子量分布变化及去除特性[J]. 环境科学学报,2007,27(2):195-200. doi: 10.3321/j.issn:0253-2468.2007.02.004

    QIAO C G, WEI Q S, WANG D S, et al. Molecular weight distribution and removal characters of DOM in the typical source water in south of China[J]. Acta Scientiae Circumstantiae,2007,27(2):195-200. doi: 10.3321/j.issn:0253-2468.2007.02.004
    [9]
    陈莹. 张家口市北水源(水源地)地下水数值模拟[D]. 石家庄: 河北地质大学, 2019.
    [10]
    云晋, 郝桂珍, 宋凤芝, 等.永定河上游水质污染特征及评价[J]. 河北建筑工程学院学报,2018,36(4):80-84. doi: 10.3969/j.issn.1008-4185.2018.04.017

    YUN J, HAO G Z, SONG F Z, et al. Characteristics and evaluation of water pollution in the upper reaches of Yongding River[J]. Journal of Hebei Institute of Architecture and Civil Engineering,2018,36(4):80-84. doi: 10.3969/j.issn.1008-4185.2018.04.017
    [11]
    郝桂珍, 宋凤芝, 徐利, 等.清水河流域农业非点源污染模拟及特征分析[J]. 中国农村水利水电,2021(1):111-118. doi: 10.3969/j.issn.1007-2284.2021.01.021

    HAO G Z, SONG F Z, XU L, et al. Simulation and characteristic analysis of agriculture non-point source pollution in Qingshui River Basin[J]. China Rural Water and Hydropower,2021(1):111-118. doi: 10.3969/j.issn.1007-2284.2021.01.021
    [12]
    KARANFIL T, ERDOGAN I, SCHLAUTMAN M A. Selecting filter membranes for measuring DOC and UV254[J]. Journal American Water Works Association,2003,95(3):86-100. doi: 10.1002/j.1551-8833.2003.tb10317.x
    [13]
    MALCOLM R L, MACCARTHY P. Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water[J]. Environment International,1992,18(6):597-607. doi: 10.1016/0160-4120(92)90027-2
    [14]
    林细萍, 卢益新, 张德明, 等.THMFP及HAAFP的测定方法[J]. 中国给水排水,2003,19(10):98-100. doi: 10.3321/j.issn:1000-4602.2003.10.035
    [15]
    CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [16]
    张倩, 董靖, 吉芳英, 等.新建人工深水湖泊沉积物上覆水和孔隙水中溶解性有机质的光谱特征[J]. 湖泊科学,2018,30(1):112-120. doi: 10.18307/2018.0111

    ZHANG Q, DONG J, JI F Y, et al. Spectral characteristics of dissolved organic matter in overlying water and pore water of newly-built artificial lake sediments[J]. Journal of Lake Sciences,2018,30(1):112-120. doi: 10.18307/2018.0111
    [17]
    宋晓娜, 于涛, 张远, 等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J]. 环境科学学报,2010,30(11):2321-2331.

    SONG X N, YU T, ZHANG Y, et al. Distribution characterization and source analysis of dissolved organic matters in Taihu Lake using three dimensional fluorescence excitation-emission matrix[J]. Acta Scientiae Circumstantiae,2010,30(11):2321-2331.
    [18]
    JAFFÉ R, BOYER J N, LU X, et al. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis[J]. Marine Chemistry,2004,84(3/4):195-210.
    [19]
    隋志男, 郅二铨, 姚杰, 等.三维荧光光谱区域积分法解析辽河七星湿地水体DOM组成及来源[J]. 环境工程技术学报,2015,5(2):114-120.

    SUI Z N, ZHI E Q, YAO J, et al. Characterization of DOM composition and origin using three-dimensional fluorescence spectroscopy coupled with region integration method in Qixing wetland[J]. Journal of Environmental Engineering Technology,2015,5(2):114-120.
    [20]
    YLLA I, ROMANÍ A M, SABATER S. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature[J]. Microbial Ecology,2012,64(3):593-604. doi: 10.1007/s00248-012-0062-6
    [21]
    朱国锋, 蒲焘, 何元庆, 等.典型季风型温冰川消融期融水化学日变化特征[J]. 环境科学,2012,33(12):4300-4306.

    ZHU G F, PU T, HE Y Q, et al. Chemical composition and daily variation of melt water during ablation season in monsoonal temperate glacier region: a case study of Baishui glacier No. 1[J]. Environmental Science,2012,33(12):4300-4306.
    [22]
    赵华标, 姚檀栋, 徐柏青.慕士塔格卡尔塔马克冰川作用区的水文与水化学特征[J]. 冰川冻土,2006,28(2):269-275. doi: 10.3969/j.issn.1000-0240.2006.02.018

    ZHAO H B, YAO T D, XU B Q. Hydrological and hydrochemical features of Kartamak Glacier area in Muztag Ata[J]. Journal of Glaciology and Geocryology,2006,28(2):269-275. doi: 10.3969/j.issn.1000-0240.2006.02.018
    [23]
    ŚWIETLIK J, DĄBROWSKA A, RACZYK-STANISŁAWIAK U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research,2004,38(3):547-558. doi: 10.1016/j.watres.2003.10.034
    [24]
    YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry,2003,82(3/4):255-271.
    [25]
    ZHANG Y L, ZHANG E L, YIN Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography,2010,55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645
    [26]
    BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research,2011,45(2):797-809. doi: 10.1016/j.watres.2010.09.005
    [27]
    申钊颖, 弓晓峰, 江良, 等. 利用荧光区域积分法解析鄱阳湖DOM组成及来源[J]. 环境科学与技术, 2019, 42(5): 196-203.

    SHEN Z Y, GONG X F, JIANG L, et al. Analysis of the composition and source of DOM in Poyang Lake by using regional integration method[J]. Environmental Science & Technology, 2019, 42(5): 196-203.
    [28]
    张博, 高建文, 范绍锦, 等.南湖水系溶解性有机质来源及时空分布特征[J]. 环境工程技术学报,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066

    ZHANG B, GAO J W, FAN S J, et al. Origin and spatial-temporal distribution characteristics of dissolved organic matter in Nanhu Lake water system[J]. Journal of Environmental Engineering Technology,2020,10(6):912-919. doi: 10.12153/j.issn.1674-991X.20200066
    [29]
    颜秉斐, 彭剑峰, 邓齐玉, 等.白塔堡河水体DOM分布特征及来源[J]. 环境工程技术学报,2019,9(3):225-232. doi: 10.12153/j.issn.1674-991X.2019.02.190

    YAN B F, PENG J F, DENG Q Y, et al. DOM distribution characteristics and source analysis of Baitabu River[J]. Journal of Environmental Engineering Technology,2019,9(3):225-232. doi: 10.12153/j.issn.1674-991X.2019.02.190
    [30]
    彭进湖, 钟惠舟, 何嘉莉, 等.三维荧光评估不同净水工艺中有机物去除效果[J]. 供水技术,2018,12(1):34-38. doi: 10.3969/j.issn.1673-9353.2018.01.008

    PENG J H, ZHONG H Z, HE J L, et al. Three-dimensional fluorescence assessment of organic matter removal in different water purification processes[J]. Water Technology,2018,12(1):34-38. doi: 10.3969/j.issn.1673-9353.2018.01.008
    [31]
    MOSTOFA K M G, WU F C, LIU C Q, et al. Characterization of Nanming River (southwestern China) sewerage-impacted pollution using an excitation-emission matrix and PARAFAC[J]. Limnology,2010,11(3):217-231. doi: 10.1007/s10201-009-0306-4
    [32]
    乔春光, 魏群山, 王东升, 等.南方天然水体DOM的化学分级、变化特征及三卤甲烷生成势(THMFP)特性研究[J]. 环境科学学报,2006,26(6):944-948. doi: 10.3321/j.issn:0253-2468.2006.06.012

    QIAO C G, WEI Q S, WANG D S, et al. Fractionation and characterization of DOM and the THMFP feature in the South-China source water[J]. Acta Scientiae Circumstantiae,2006,26(6):944-948. doi: 10.3321/j.issn:0253-2468.2006.06.012
    [33]
    魏晓婷. 于桥水库典型消毒副产物及其前体物研究[D]. 天津: 天津大学, 2014.
    [34]
    梁远. 滦河水体溶解性有机物的综合分级表征及其混凝去除研究[D]. 北京: 北京交通大学, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article Views(298) PDF Downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return