Volume 12 Issue 3
May  2022
Turn off MathJax
Article Contents
ZHANG M D,XU Q,LIU Z H,et al.Prediction of water quality time series based on the dynamic sliding window BP neural network model[J].Journal of Environmental Engineering Technology,2022,12(3):809-815 doi: 10.12153/j.issn.1674-991X.20210194
Citation: ZHANG M D,XU Q,LIU Z H,et al.Prediction of water quality time series based on the dynamic sliding window BP neural network model[J].Journal of Environmental Engineering Technology,2022,12(3):809-815 doi: 10.12153/j.issn.1674-991X.20210194

Prediction of water quality time series based on the dynamic sliding window BP neural network model

doi: 10.12153/j.issn.1674-991X.20210194
  • Received Date: 2021-05-21
  • Accepted Date: 2021-09-30
  • Available Online: 2022-06-07
  • In order to improve the prediction precision of water quality having time series properties by BP neural network (BPNN), principal component analysis (PCA) was used for characteristic extraction and dimension reduction of the original data. Concentrations of dissolved organic compound (DOC) and total nitrogen (TN), and turbidity were selected as the water quality prediction indices, a three-layer BPNN model was established for prediction, and the prediction performance was analyzed. The results showed that the optimal training-set sizes of concentrations of DOC and TN, and turbidity were 60, 60, and 90 days, while the best BPNN topological structures were 9-12-1, 8-6-1 and 7-13-1, respectively. The optimized BPNN model exhibited favorable prediction performance on the variation trends of concentrations of DOC and TN, and turbidity. In contrast, the prediction performance of DOC by BPNN model was significantly better than that of TN and turbidity, with RMSE, MAPE, and R values of 0.040, 0.66% and 0.867, respectively. This model had a good applicability and precision for prediction of surface water qualities having non-linear characteristics.

     

  • loading
  • [1]
    史斌, 姜继平, 王鹏.基于高频在线水质数据异常的突发污染预警[J]. 中国环境科学,2017,37(11):4394-4400. doi: 10.3969/j.issn.1000-6923.2017.11.046

    SHI B, JIANG J P, WANG P. Early warning of water pollution incidents based on abnormal change of water quality data from high frequency online monitoring[J]. China Environmental Science,2017,37(11):4394-4400. doi: 10.3969/j.issn.1000-6923.2017.11.046
    [2]
    MAHAJAN A U, CHALAPATIRAO C V, GADKARI S K. Mathematical modeling: a tool for coastal water quality management[J]. Water Science and Technology,1999,40(2):151-157. doi: 10.2166/wst.1999.0110
    [3]
    Fang X B, Zhang J Y, Chen Y X. QUAL2K model used in the water quality assessment of Qiantang River, China[J]. Water Environment Research,2008,80(11):2125-2133. doi: 10.2175/106143008X304794
    [4]
    沈煜恒, 戴小鹏, 湛誉, 等.基于灰色模型的水质监测预警系统设计[J]. 农业工程,2019,9(8):31-34. doi: 10.3969/j.issn.2095-1795.2019.08.011

    SHEN Y H, DAI X P, ZHAN Y, et al. Design of water quality monitoring and early warning system based on grey model[J]. Agricultural Engineering,2019,9(8):31-34. doi: 10.3969/j.issn.2095-1795.2019.08.011
    [5]
    李如忠.水质预测理论模式研究进展与趋势分析[J]. 合肥工业大学学报(自然科学版),2006,29(1):26-30.
    [6]
    黄俊, 周申范, 唐婉莹.TNT生化降解时间序列的人工神经网络预报模型[J]. 环境科学研究,2000,13(2):3-5. doi: 10.3321/j.issn:1001-6929.2000.02.002

    HUANG J, ZHOU S F, TANG W Y. Artificial neutral network predicting model of TNT biodegradation time series[J]. Research of Environmental Sciences,2000,13(2):3-5. doi: 10.3321/j.issn:1001-6929.2000.02.002
    [7]
    李春华, 胡文, 叶春, 等.基于BP神经网络预测地表水净化装置总氮的去除效果[J]. 环境工程技术学报,2018,8(6):651-655. doi: 10.3969/j.issn.1674-991X.2018.06.086

    LI C H, HU W, YE C. Study on prediction of total nitrogen removal of a surface water purification device based on BP neural network[J]. Journal of Environmental Engineering Technology,2018,8(6):651-655. doi: 10.3969/j.issn.1674-991X.2018.06.086
    [8]
    林佳敏, 陈金良, 林晶晶, 等.BP神经网络和ARIMA模型对污水处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报,2019,9(5):573-578. doi: 10.12153/j.issn.1674-991X.2019.03.261

    LIN J M, CHEN J L, LIN J J, et al. The simulation and prediction of TN in wastewater treatment effluent using BP neural network and ARIMA model[J]. Journal of Environmental Engineering Technology,2019,9(5):573-578. doi: 10.12153/j.issn.1674-991X.2019.03.261
    [9]
    左朝晖, 李绍康, 杨津津, 等.基于GA-BP神经网络的页岩气开发区域水资源承载力研究[J]. 环境工程技术学报,2021,11(1):194-201. doi: 10.12153/j.issn.1674-991X.20200081

    ZUO Z H, LI S K, YANG J L, et al. Research on water resources carrying capacity of shale gas development area based on GA-BP neural network[J]. Journal of Environmental Engineering Technology,2021,11(1):194-201. doi: 10.12153/j.issn.1674-991X.20200081
    [10]
    刘宇同. 一种基于人工神经网络的地表水质预测方法[D]. 哈尔滨: 哈尔滨工程大学, 2017.
    [11]
    赵文喜, 周滨, 刘红磊, 等.基于BP神经网络的海河干流叶绿素浓度短时预测研究[J]. 水利水电技术,2017,48(11):134-140.
    [12]
    张青, 王学雷, 张婷, 等.基于BP神经网络的洪湖水质指标预测研究[J]. 湿地科学,2016,14(2):212-218.

    ZHANG Q, WANG X L, ZHANG T, et al. Prediction of water quality index of Honghu Lake based on back propagation neural network model[J]. Wetland Science,2016,14(2):212-218.
    [13]
    赵林, 戴天骄, 陈亮, 等.基于BP神经网络的桃林口水库水质预测[J]. 安徽农业科学,2019,47(24):73-77. doi: 10.3969/j.issn.0517-6611.2019.24.024

    ZHAO L, DAI T J, CHEN L, et al. Prediction of water quality in Taolinkou Reservoir based on BP neural network model[J]. Journal of Anhui Agricultural Sciences,2019,47(24):73-77. doi: 10.3969/j.issn.0517-6611.2019.24.024
    [14]
    刘双印. 基于计算智能的水产养殖水质预测预警方法研究[D]. 北京: 中国农业大学, 2014.
    [15]
    袁红春, 赵彦涛, 刘金生.基于PCA-NARX神经网络的氨氮预测[J]. 大连海洋大学学报,2018,33(6):808-813.

    YUAN H C, ZHAO Y T, LIU J S. Ammonia nitrogen level forecasting based on PCA-NARX neural network[J]. Journal of Dalian Ocean University,2018,33(6):808-813.
    [16]
    袁红春, 黄俊豪, 赵彦涛.基于PCA-NARX神经网络的溶解氧预测[J]. 山东农业大学学报(自然科学版),2019,50(5):902-907.
    [17]
    MULIA I E, TAY H, ROOPSEKHAR K, et al. Hybrid ANN-GA model for predicting turbidity and chlorophyll-a concentrations[J]. Journal of Hydro-Environment Research,2013,7(4):279-299. doi: 10.1016/j.jher.2013.04.003
    [18]
    王佳楠. 基于BP神经网络的高锰酸盐指数预测研究 : 以渭南潼关吊桥段为例[D]. 西安: 长安大学, 2017.
    [19]
    肖金球, 周翔, 潘杨, 等.GA-BP优化TS模糊神经网络水质监测与评价系统预测模型的应用: 以太湖为例[J]. 西南大学学报(自然科学版),2019,41(12):110-119.
    [20]
    LACHENBRUCH P A, COHEN J. Statistical power analysis for the behavioral sciences[J]. Journal of the American Statistical Association,1989,84(408):1096.
    [21]
    查木哈, 卢志宏, 翟继武, 等.双隐含层BP神经网络模型在老哈河水质预测中的应用[J]. 水资源与水工程学报,2018,29(2):56-61. ⊕ doi: 10.11705/j.issn.1672-643X.2018.02.10
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article Views(723) PDF Downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return