Volume 11 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
LIU Ruize, FANG Yuan, ZHANG Tao, ZHANG Jingqiao, WANG Shaobo, ZHANG Wenjie, WANG Han, WANG Shulan. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1041-1048. doi: 10.12153/j.issn.1674-991X.20210202
Citation: LIU Ruize, FANG Yuan, ZHANG Tao, ZHANG Jingqiao, WANG Shaobo, ZHANG Wenjie, WANG Han, WANG Shulan. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1041-1048. doi: 10.12153/j.issn.1674-991X.20210202

Characteristics and source analysis of VOCs pollution in summer in Qingdao

doi: 10.12153/j.issn.1674-991X.20210202
More Information
  • Corresponding author: WANG Shulan E-mail: wangsl@craes.org.cn
  • Received Date: 2021-05-24
  • Publish Date: 2021-11-20
  • VOCs online monitoring was carried out in Qingdao City, Shandong Province from July 1 to 31, 2020, and the concentration, pollution characteristics, reactive activity and source of VOCs were analyzed. The results showed that the concentration of VOCs in summer of 2020 was (24.78±11.69)×10-9, of which alkanes accounted for the largest content (44.79%), followed by aldehydes and ketones (21.98%) and halogenated hydrocarbons (16.85%). The results of atmospheric chemical reactivity of VOCs showed that alkenes contributed the most to ozone formation potential (OFP) and hydroxyl reaction rate (L·OH), accounting for 37.10% and 55.63%, respectively. Butene, n-butane and propylene were the three species with the highest contribution to OFP and L·OH. Positive matrix factorization (PMF) model was used to analyze the sources of VOCs, and five sources were identified, including liquefied petroleum gas (LPG) /secondary generation source (31.1%), fixed combustion source (22.6%), mobile source (20.6%), rubber and plastic production source (18.1%) and industrial solvent source (7.6%). The use of LPG was the key point of atmospheric VOCs control in Qingdao. The clustering results of backward airflow trajectories showed that Qingdao was mainly affected by the provincial urban air masses, the long-distance maritime air masses in the northeast, and maritime air masses in the east-southeast direction in summer. The short-range air masses from the province made the largest contribution to the local VOCs concentration in Qingdao.

     

  • loading
  • [1]
    JACOB D J, WINNER D A. Effect of climate change on air quality[J]. Atmospheric Environment, 2009, 43(1):51-63.
    doi: 10.1016/j.atmosenv.2008.09.051
    [2]
    唐孝炎, 张远航, 邵敏. 大气环境化学[M].2版. 北京: 高等教育出版社, 2010:70-79.
    [3]
    CHAN C K, YAO X H. Air pollution in mega cities in China[J]. Atmospheric Environment, 2008, 42(1):1-42.
    doi: 10.1016/j.atmosenv.2007.09.003
    [4]
    成翔, 赵继峰, 肖洋, 等. 工业聚集区大气VOCs组成特征及对臭氧生成的影响[J]. 环境工程技术学报, 2020, 10(5):823-830.

    CHENG X, ZHAO J F, XIAO Y, et al. Composition characteristics of atmospheric VOCs and the influence on ozone formation in an industrial cluster area[J]. Journal of Environmental Engineering Technology, 2020, 10(5):823-830.
    [5]
    ZHU H L, WANG H L, JING S G, et al. Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China[J]. Atmospheric Environment, 2018, 190:232-240.
    doi: 10.1016/j.atmosenv.2018.07.026
    [6]
    XIE M, SHU L, WANG T J, et al. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region,China[J]. Atmospheric Environment, 2017, 150:162-180.
    doi: 10.1016/j.atmosenv.2016.11.053
    [7]
    邹巧莉, 孙鑫, 田旭东, 等. 嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析[J]. 中国环境监测, 2017, 33(4):91-98.

    ZOU Q L, SUN X, TIAN X D, et al. Ozone formation potential and sources apportionment of atmospheric VOCs during typical periods in summer of Jiashan[J]. Environmental Monitoring in China, 2017, 33(4):91-98.
    [8]
    ZHONG Z M, SHA Q E, ZHENG J Y, et al. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Science of the Total Environment, 2017, 583:19-28.
    doi: 10.1016/j.scitotenv.2016.12.172
    [9]
    YUAN B, CHEN W T, SHAO M, et al. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD),China[J]. Atmospheric Research, 2012, 116:93-104.
    doi: 10.1016/j.atmosres.2012.03.006
    [10]
    胡君, 王淑兰, 吴亚君, 等. 北京怀柔O3污染过程初始VOCs浓度特征及来源分析[J]. 环境科学研究, 2019, 32(5):766-775.

    HU J, WANG S L, WU Y J, et al. Characteristics and source analysis of initial mixing ratio of atmospheric VOCs during an ozone episode in Huairou,Beijing[J]. Research of Environmental Sciences, 2019, 32(5):766-775.
    [11]
    XING J, DING D, WANG S X, et al. Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing-Tianjin-Hebei region,China[J]. Atmospheric Chemistry and Physics, 2018, 18(11):7799-7814.
    [12]
    罗达通, 高健, 王淑兰, 等. 北京秋季大气挥发性有机物及相关污染物特征分析[J]. 中国科学院大学学报, 2014, 31(3):329-336.

    LUO D T, GAO J, WANG S L, et al. Characteristics of volatile organic compounds and relative pollutants observed in autumn in Beijing[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3):329-336.
    [13]
    GUAN Y N, WANG L, WANG S J, et al. Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang,China[J]. Journal of Environmental Sciences, 2020, 97:25-34.
    doi: 10.1016/j.jes.2020.04.022
    [14]
    王琴, 刘保献, 张大伟, 等. 北京市大气VOCs的时空分布特征及化学反应活性[J]. 中国环境科学, 2017, 37(10):3636-3646.

    WANG Q, LIU B X, ZHANG D W, et al. Temporal and spatial distribution of VOCs and their role in chemical reactivity in Beijing[J]. China Environmental Science, 2017, 37(10):3636-3646.
    [15]
    邵敏, 付琳琳, 刘莹, 等. 北京市大气挥发性有机物的关键活性组分及其来源[J]. 中国科学D辑, 2005, 35(增刊1):123-130.
    [16]
    王伶瑞. 长三角北部沿海城市大气VOCs分布特征及其健康风险评价[D]. 南京:南京信息工程大学, 2020.
    [17]
    BIE S J, YANG L X, ZHANG Y, et al. Source appointment of PM2.5 in Qingdao port,east of China[J]. Science of the Total Environment, 2021, 755:142456.
    doi: 10.1016/j.scitotenv.2020.142456
    [18]
    PAN S L, NI W, LI W J, et al. Effects of PM2.5 and PM10 on congenital hypothyroidism in Qingdao,China,2014-2017:a quantitative analysis[J]. Therapeutic Advances in Endocrinology and Metabolism, 2019, 10:2042018819892151.
    [19]
    王建林, 时晓曚, 赵文雪, 等. 青岛地区一次雾霾重污染天气过程特征分析[J]. 气象科技, 2018, 46(6):1251-1257.

    WANG J L, SHI X M, ZHAO W X, et al. Analysis of meteorological conditions in a serious smog pollution event in Qingdao in 2016[J]. Meteorological Science and Technology, 2018, 46(6):1251-1257.
    [20]
    环境保护部. 环境空气挥发性有机物的测定吸附管采样-热脱附/气相色谱-质谱法:HJ 644—2013[S]. 北京: 中国环境科学出版社, 2013.
    [21]
    MARTIEN P T, HARLEY R A, MILFORD J B, et al. Evaluation of incremental reactivity and its uncertainty in Southern California[J]. Environmental Science & Technology, 2003, 37(8):1598-1608.
    doi: 10.1021/es026174t
    [22]
    ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12):4605-4638.
    doi: 10.1021/cr0206420
    [23]
    VENECEK M A, CARTER W P L, KLEEMAN M J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010[J]. Journal of the Air & Waste Management Association (1995), 2018, 68(12):1301-1316.
    [24]
    PAATERO P, TAPPER U. Positive matrix factorization:a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2):111-126.
    doi: 10.1002/(ISSN)1099-095X
    [25]
    BUZCU B, FRASER M P. Source identification and apportionment of volatile organic compounds in Houston,TX[J]. Atmospheric Environment, 2006, 40(13):2385-2400.
    doi: 10.1016/j.atmosenv.2005.12.020
    [26]
    DRAXLER R R. Hybrid single-particle Lagrangian integrated trajectories (HYSPLIT-4),version 3.0:user ‘s guide and the model description[M]. Maryland:US Department of Commerce,National Oceanic and Atmospheric Administration,Environmental Research Laboratories,Air Resources Laboratory, 1992.
    [27]
    DAVIS R E, NORMILE C P, SITKA L, et al. A comparison of trajectory and air mass approaches to examine ozone variability[J]. Atmospheric Environment, 2010, 44(1):64-74.
    doi: 10.1016/j.atmosenv.2009.09.038
    [28]
    BARLETTA B, MEINARDI S, SIMPSON I J, et al. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region:Guangzhou and Dongguan[J]. Atmospheric Environment, 2008, 42(18):4393-4408.
    doi: 10.1016/j.atmosenv.2008.01.028
    [29]
    RAPPENGLÜCK B, OYOLA P, OLAETA I, et al. The evolution of photochemical smog in the metropolitan area of Santiago de Chile[J]. Journal of Applied Meteorology, 2000, 39(3):275-290.
    doi: 10.1175/1520-0450(2000)039<0275:TEOPSI>2.0.CO;2
    [30]
    HU K, WANG M, WANG H L, et al. Source apportionment of ambient carbonyl compounds based on a PMF and source tracer ratio method:a case based on observations in Nanjing[J]. Environmental science, 2021, 42(1):45-54.
    [31]
    WANG H L, NIE L, LI J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries[J]. Chinese Science Bulletin, 2013, 58(7):724-730.
    doi: 10.1007/s11434-012-5345-2
    [32]
    徐晨曦, 陈军辉, 韩丽, 等. 成都市2017年夏季大气VOCs污染特征、臭氧生成潜势及来源分析[J]. 环境科学研究, 2019, 32(4):619-626.

    XU C X, CHEN J H, HAN L, et al. Pollution characteristics,ozone generation potential and source analysis of atmospheric VOCs in Chengdu in the summer of 2017[J]. Environmental Science Research, 2019, 32(4):619-626.
    [33]
    赵秋月, 李春燕, 陈凤, 等. 南通市夏季VOCs污染特征与来源研究[J]. 中国环境监测, 2020, 36(2):148-156.

    ZHAO Q Y, LI C Y, CHEN F, et al. Pollution characteristics and source analysis of ambient VOCs in summer in Nantong[J]. Environmental Monitoring in China, 2020, 36(2):148-156.
    [34]
    李陵, 李振亮, 张丹, 等. 重庆市主城区O3污染时期大气VOCs污染特征及来源解析[J/OL]. 环境科学.[2021-04-24].https://doi.org/10.13227/j.hjkx.202101119 .
    [35]
    罗瑞雪, 刘保双, 梁丹妮, 等. 天津市郊夏季的臭氧变化特征及其前体物VOCs的来源解析[J]. 环境科学, 2021, 42(1):75-87.
    doi: 10.1021/es071924q

    LUO R X, LIU B S, LIANG D N, et al. Characteristics of ozone and source apportionment of the precursor VOCs in Tianjin suburbs in summer[J]. Environmental Science, 2021, 42(1):75-87. doi: 10.1021/es071924q
    [36]
    MA J Z, XU X B, ZHAO C S, et al. A review of atmospheric chemistry research in China:photochemical smog,haze pollution,and gas-aerosol interactions[J]. Advances in Atmospheric Sciences, 2012, 29(5):1006-1026.
    doi: 10.1007/s00376-012-1188-7
    [37]
    ZHU Y H, YANG L X, KAWAMURA K, et al. Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt.Tai in 2014[J]. Environmental Pollution, 2017, 220:863-872.
    doi: 10.1016/j.envpol.2016.10.070
    [38]
    李瑞芃, 吕建华, 付飞, 等. 青岛市重点行业挥发性有机物排放特征研究[C]// 2018全国VOCs监测与治理高峰论坛论文集.北京:中国环境科学学会, 2018: 13.
    [39]
    LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China:Part Ⅰ[J]. Atmospheric Environment, 2008, 42(25):6247-6260.
    doi: 10.1016/j.atmosenv.2008.01.070
    [40]
    GUO H, CHENG H R, LING Z H, et al. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta[J]. Journal of Hazardous Materials, 2011, 188(1/2/3):116-124.
    doi: 10.1016/j.jhazmat.2011.01.081
    [41]
    胡崑, 王鸣, 王红丽, 等. 基于PMF和源示踪物比例法的大气羰基化合物来源解析:以南京市观测为例[J]. 环境科学, 2021, 42(1):45-54.

    HU K, WANG M, WANG H L, et al. Source apportionment of ambient carbonyl compounds based on a PMF and source tracer ratio method:a case based on observations in Nanjing[J]. Environmental Science, 2021, 42(1):45-54.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(585) PDF Downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return