Citation: | LIU Ruize, FANG Yuan, ZHANG Tao, ZHANG Jingqiao, WANG Shaobo, ZHANG Wenjie, WANG Han, WANG Shulan. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1041-1048. doi: 10.12153/j.issn.1674-991X.20210202 |
[1] |
JACOB D J, WINNER D A. Effect of climate change on air quality[J]. Atmospheric Environment, 2009, 43(1):51-63.
doi: 10.1016/j.atmosenv.2008.09.051 |
[2] |
唐孝炎, 张远航, 邵敏. 大气环境化学[M].2版. 北京: 高等教育出版社, 2010:70-79.
|
[3] |
CHAN C K, YAO X H. Air pollution in mega cities in China[J]. Atmospheric Environment, 2008, 42(1):1-42.
doi: 10.1016/j.atmosenv.2007.09.003 |
[4] |
成翔, 赵继峰, 肖洋, 等. 工业聚集区大气VOCs组成特征及对臭氧生成的影响[J]. 环境工程技术学报, 2020, 10(5):823-830.
CHENG X, ZHAO J F, XIAO Y, et al. Composition characteristics of atmospheric VOCs and the influence on ozone formation in an industrial cluster area[J]. Journal of Environmental Engineering Technology, 2020, 10(5):823-830.
|
[5] |
ZHU H L, WANG H L, JING S G, et al. Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China[J]. Atmospheric Environment, 2018, 190:232-240.
doi: 10.1016/j.atmosenv.2018.07.026 |
[6] |
XIE M, SHU L, WANG T J, et al. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region,China[J]. Atmospheric Environment, 2017, 150:162-180.
doi: 10.1016/j.atmosenv.2016.11.053 |
[7] |
邹巧莉, 孙鑫, 田旭东, 等. 嘉善夏季典型时段大气VOCs的臭氧生成潜势及来源解析[J]. 中国环境监测, 2017, 33(4):91-98.
ZOU Q L, SUN X, TIAN X D, et al. Ozone formation potential and sources apportionment of atmospheric VOCs during typical periods in summer of Jiashan[J]. Environmental Monitoring in China, 2017, 33(4):91-98.
|
[8] |
ZHONG Z M, SHA Q E, ZHENG J Y, et al. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Science of the Total Environment, 2017, 583:19-28.
doi: 10.1016/j.scitotenv.2016.12.172 |
[9] |
YUAN B, CHEN W T, SHAO M, et al. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta (PRD),China[J]. Atmospheric Research, 2012, 116:93-104.
doi: 10.1016/j.atmosres.2012.03.006 |
[10] |
胡君, 王淑兰, 吴亚君, 等. 北京怀柔O3污染过程初始VOCs浓度特征及来源分析[J]. 环境科学研究, 2019, 32(5):766-775.
HU J, WANG S L, WU Y J, et al. Characteristics and source analysis of initial mixing ratio of atmospheric VOCs during an ozone episode in Huairou,Beijing[J]. Research of Environmental Sciences, 2019, 32(5):766-775.
|
[11] |
XING J, DING D, WANG S X, et al. Quantification of the enhanced effectiveness of NOx control from simultaneous reductions of VOC and NH3 for reducing air pollution in the Beijing-Tianjin-Hebei region,China[J]. Atmospheric Chemistry and Physics, 2018, 18(11):7799-7814.
|
[12] |
罗达通, 高健, 王淑兰, 等. 北京秋季大气挥发性有机物及相关污染物特征分析[J]. 中国科学院大学学报, 2014, 31(3):329-336.
LUO D T, GAO J, WANG S L, et al. Characteristics of volatile organic compounds and relative pollutants observed in autumn in Beijing[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3):329-336.
|
[13] |
GUAN Y N, WANG L, WANG S J, et al. Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang,China[J]. Journal of Environmental Sciences, 2020, 97:25-34.
doi: 10.1016/j.jes.2020.04.022 |
[14] |
王琴, 刘保献, 张大伟, 等. 北京市大气VOCs的时空分布特征及化学反应活性[J]. 中国环境科学, 2017, 37(10):3636-3646.
WANG Q, LIU B X, ZHANG D W, et al. Temporal and spatial distribution of VOCs and their role in chemical reactivity in Beijing[J]. China Environmental Science, 2017, 37(10):3636-3646.
|
[15] |
邵敏, 付琳琳, 刘莹, 等. 北京市大气挥发性有机物的关键活性组分及其来源[J]. 中国科学D辑, 2005, 35(增刊1):123-130.
|
[16] |
王伶瑞. 长三角北部沿海城市大气VOCs分布特征及其健康风险评价[D]. 南京:南京信息工程大学, 2020.
|
[17] |
BIE S J, YANG L X, ZHANG Y, et al. Source appointment of PM2.5 in Qingdao port,east of China[J]. Science of the Total Environment, 2021, 755:142456.
doi: 10.1016/j.scitotenv.2020.142456 |
[18] |
PAN S L, NI W, LI W J, et al. Effects of PM2.5 and PM10 on congenital hypothyroidism in Qingdao,China,2014-2017:a quantitative analysis[J]. Therapeutic Advances in Endocrinology and Metabolism, 2019, 10:2042018819892151.
|
[19] |
王建林, 时晓曚, 赵文雪, 等. 青岛地区一次雾霾重污染天气过程特征分析[J]. 气象科技, 2018, 46(6):1251-1257.
WANG J L, SHI X M, ZHAO W X, et al. Analysis of meteorological conditions in a serious smog pollution event in Qingdao in 2016[J]. Meteorological Science and Technology, 2018, 46(6):1251-1257.
|
[20] |
环境保护部. 环境空气挥发性有机物的测定吸附管采样-热脱附/气相色谱-质谱法:HJ 644—2013[S]. 北京: 中国环境科学出版社, 2013.
|
[21] |
MARTIEN P T, HARLEY R A, MILFORD J B, et al. Evaluation of incremental reactivity and its uncertainty in Southern California[J]. Environmental Science & Technology, 2003, 37(8):1598-1608.
doi: 10.1021/es026174t |
[22] |
ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12):4605-4638.
doi: 10.1021/cr0206420 |
[23] |
VENECEK M A, CARTER W P L, KLEEMAN M J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010[J]. Journal of the Air & Waste Management Association (1995), 2018, 68(12):1301-1316.
|
[24] |
PAATERO P, TAPPER U. Positive matrix factorization:a non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2):111-126.
doi: 10.1002/(ISSN)1099-095X |
[25] |
BUZCU B, FRASER M P. Source identification and apportionment of volatile organic compounds in Houston,TX[J]. Atmospheric Environment, 2006, 40(13):2385-2400.
doi: 10.1016/j.atmosenv.2005.12.020 |
[26] |
DRAXLER R R. Hybrid single-particle Lagrangian integrated trajectories (HYSPLIT-4),version 3.0:user ‘s guide and the model description[M]. Maryland:US Department of Commerce,National Oceanic and Atmospheric Administration,Environmental Research Laboratories,Air Resources Laboratory, 1992.
|
[27] |
DAVIS R E, NORMILE C P, SITKA L, et al. A comparison of trajectory and air mass approaches to examine ozone variability[J]. Atmospheric Environment, 2010, 44(1):64-74.
doi: 10.1016/j.atmosenv.2009.09.038 |
[28] |
BARLETTA B, MEINARDI S, SIMPSON I J, et al. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region:Guangzhou and Dongguan[J]. Atmospheric Environment, 2008, 42(18):4393-4408.
doi: 10.1016/j.atmosenv.2008.01.028 |
[29] |
RAPPENGLÜCK B, OYOLA P, OLAETA I, et al. The evolution of photochemical smog in the metropolitan area of Santiago de Chile[J]. Journal of Applied Meteorology, 2000, 39(3):275-290.
doi: 10.1175/1520-0450(2000)039<0275:TEOPSI>2.0.CO;2 |
[30] |
HU K, WANG M, WANG H L, et al. Source apportionment of ambient carbonyl compounds based on a PMF and source tracer ratio method:a case based on observations in Nanjing[J]. Environmental science, 2021, 42(1):45-54.
|
[31] |
WANG H L, NIE L, LI J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries[J]. Chinese Science Bulletin, 2013, 58(7):724-730.
doi: 10.1007/s11434-012-5345-2 |
[32] |
徐晨曦, 陈军辉, 韩丽, 等. 成都市2017年夏季大气VOCs污染特征、臭氧生成潜势及来源分析[J]. 环境科学研究, 2019, 32(4):619-626.
XU C X, CHEN J H, HAN L, et al. Pollution characteristics,ozone generation potential and source analysis of atmospheric VOCs in Chengdu in the summer of 2017[J]. Environmental Science Research, 2019, 32(4):619-626.
|
[33] |
赵秋月, 李春燕, 陈凤, 等. 南通市夏季VOCs污染特征与来源研究[J]. 中国环境监测, 2020, 36(2):148-156.
ZHAO Q Y, LI C Y, CHEN F, et al. Pollution characteristics and source analysis of ambient VOCs in summer in Nantong[J]. Environmental Monitoring in China, 2020, 36(2):148-156.
|
[34] |
李陵, 李振亮, 张丹, 等. 重庆市主城区O3污染时期大气VOCs污染特征及来源解析[J/OL]. 环境科学.[2021-04-24].https://doi.org/10.13227/j.hjkx.202101119 .
|
[35] |
罗瑞雪, 刘保双, 梁丹妮, 等. 天津市郊夏季的臭氧变化特征及其前体物VOCs的来源解析[J]. 环境科学, 2021, 42(1):75-87.
doi: 10.1021/es071924q LUO R X, LIU B S, LIANG D N, et al. Characteristics of ozone and source apportionment of the precursor VOCs in Tianjin suburbs in summer[J]. Environmental Science, 2021, 42(1):75-87. doi: 10.1021/es071924q
|
[36] |
MA J Z, XU X B, ZHAO C S, et al. A review of atmospheric chemistry research in China:photochemical smog,haze pollution,and gas-aerosol interactions[J]. Advances in Atmospheric Sciences, 2012, 29(5):1006-1026.
doi: 10.1007/s00376-012-1188-7 |
[37] |
ZHU Y H, YANG L X, KAWAMURA K, et al. Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt.Tai in 2014[J]. Environmental Pollution, 2017, 220:863-872.
doi: 10.1016/j.envpol.2016.10.070 |
[38] |
李瑞芃, 吕建华, 付飞, 等. 青岛市重点行业挥发性有机物排放特征研究[C]// 2018全国VOCs监测与治理高峰论坛论文集.北京:中国环境科学学会, 2018: 13.
|
[39] |
LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China:Part Ⅰ[J]. Atmospheric Environment, 2008, 42(25):6247-6260.
doi: 10.1016/j.atmosenv.2008.01.070 |
[40] |
GUO H, CHENG H R, LING Z H, et al. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta[J]. Journal of Hazardous Materials, 2011, 188(1/2/3):116-124.
doi: 10.1016/j.jhazmat.2011.01.081 |
[41] |
胡崑, 王鸣, 王红丽, 等. 基于PMF和源示踪物比例法的大气羰基化合物来源解析:以南京市观测为例[J]. 环境科学, 2021, 42(1):45-54.
HU K, WANG M, WANG H L, et al. Source apportionment of ambient carbonyl compounds based on a PMF and source tracer ratio method:a case based on observations in Nanjing[J]. Environmental Science, 2021, 42(1):45-54.
|