Volume 12 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG B W,CHANG J,WANG Z W.Evaluation exploration of the impacts of synthetic biotechnologies on biodiversity[J].Journal of Environmental Engineering Technology,2022,12(1):215-223 doi: 10.12153/j.issn.1674-991X.20210213
Citation: WANG B W,CHANG J,WANG Z W.Evaluation exploration of the impacts of synthetic biotechnologies on biodiversity[J].Journal of Environmental Engineering Technology,2022,12(1):215-223 doi: 10.12153/j.issn.1674-991X.20210213

Evaluation exploration of the impacts of synthetic biotechnologies on biodiversity

doi: 10.12153/j.issn.1674-991X.20210213
  • Received Date: 2021-06-01
  • Synthetic biotechnologies are recently emerged novel biotechnologies, and represent the new stage of modern biotechnology. A series of important progresses have been achieved in many fields such as microbial cell factories, synthetic microbial consortium, artificial genomes synthesis, genome editing and gene drives, thanks to the intensive support from the government, industrial and academia in many countries. With the further growth of research, development and application of synthetic biotechnologies, the evaluation of their impacts on the biodiversity of the ecosystem, which is one of the critical issues related to human society, becomes a very important topic. Based on the evaluation principle of preventing and reducing negative risks, promoting beneficial development and application, and protecting biodiversity, the impact of research, development and application of synthetic biotechnology on biodiversity was qualitatively analyzed. A two-dimensional evaluation method was adopted, which comprehensively considered the proper application scope of synthetic biotechnologies and the safety of products, components and organisms based on synthetic biotechnology. The countermeasures and suggestions for coping with potential risks of synthetic biotechnology on biodiversity were put forward, so as to provide references for the healthy development of synthetic biotechnologies for the prosper of human society.

     

  • loading
  • [1]
    常江.《生物多样性公约》中合成生物学的谈判进程及对我国履约的启示[J]. 环境保护,2018,46(23):28-31.

    CHANG J. The negotiation process of synthetic in convention on biological diversity and its implications to China[J]. EnvironmentalProtection,2018,46(23):28-31.
    [2]
    宋健.保护生物多样性是全人类的共同责任[J]. 浙江林业,1994(4):1.
    [3]
    叶晓婷.我国是生物多样性最丰富12国之一 五大祸端威胁中国生物安全[J]. 环境与生活,2013(11):26-30.
    [4]
    冯晓娟, 米湘成, 肖治术, 等.中国生物多样性监测与研究网络建设及进展[J]. 中国科学院院刊,2019,34(12):1389-1398.

    FENG X J, MI X C, XIAO Z S, et al. Overview of Chinese biodiversity observation network (Sino BON)[J]. Bulletin of Chinese Academy of Sciences,2019,34(12):1389-1398.
    [5]
    李爱农, 尹高飞, 张正健, 等.基于站点的生物多样性星空地一体化遥感监测[J]. 生物多样性,2018,26(8):819-827. doi: 10.17520/biods.2018052

    LI A N, YIN G F, ZHANG Z J, et al. Space-air-field integrated biodiversity monitoring based on experimental station[J]. Biodiversity Science,2018,26(8):819-827. doi: 10.17520/biods.2018052
    [6]
    朱媛君, 山丹, 张晓, 等.揭示群落结构及其环境响应的联合物种分布模型的研究进展[J]. 应用生态学报,2018,29(12):4217-4225.

    ZHU Y J, SHAN D, ZHANG X, et al. Advances in joint species distribution models to reveal community structure and its environmental response[J]. Chinese Journal of Applied Ecology,2018,29(12):4217-4225.
    [7]
    马克平, 朱敏, 纪力强, 等.中国生物多样性大数据平台建设[J]. 中国科学院院刊,2018,33(8):838-845.

    MA K P, ZHU M, JI L Q, et al. Establishing China infrastructure for big biodiversity data[J]. Bulletin of Chinese Academy of Sciences,2018,33(8):838-845.
    [8]
    National Academies of Sciences, Engineering, and Medicine. Biodefense in the age of synthetic biology[M/OL]. Washington DC: The National Academies Press, 2018. https://doi.org/10.17226/24890.
    [9]
    中华人民共和国生物安全法[A/OL]. (2020-10-18)[2021-06-01]. http://www.xinhuanet.com/legal/2020-10/18/c_1126624481.htm.
    [10]
    BECKER J, WITTMANN C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products[J]. Angewandte Chemie (International Edition in English),2015,54(11):3328-3350. doi: 10.1002/anie.201409033
    [11]
    NETT R S, LAU W, SATTELY E S. Discovery and engineering of colchicine alkaloid biosynthesis[J]. Nature,2020,584(7819):148-153. doi: 10.1038/s41586-020-2546-8
    [12]
    HOLKENBRINK C, DING B J, WANG H L, et al. Production of moth sex pheromones for pest control by yeast fermentation[J]. Metabolic Engineering,2020,62:312-321. doi: 10.1016/j.ymben.2020.10.001
    [13]
    WANG D, WANG J H, SHI Y S, et al. Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform[J]. Metabolic Engineering,2020,61:131-140. doi: 10.1016/j.ymben.2020.05.007
    [14]
    LOSOI P S, SANTALA V P, SANTALA S M. Enhanced population control in a synthetic bacterial consortium by interconnected carbon cross-feeding[J]. ACS Synthetic Biology,2019,8(12):2642-2650. doi: 10.1021/acssynbio.9b00316
    [15]
    KIM J K, CHEN Y, HIRNING A J, et al. Long-range temporal coordination of gene expression in synthetic microbial consortia[J]. Nature Chemical Biology,2019,15(11):1102-1109. doi: 10.1038/s41589-019-0372-9
    [16]
    GUTIÉRREZ N, GARRIDO D. Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes[J]. mSystems, 2019, 4(4). doi: 10.1128/msystems.00185-19.
    [17]
    SADEGHPOUR M, VELIZ-CUBA A, OROSZ G, et al. Bistability and oscillations in co-repressive synthetic microbial consortia[J]. Quantitative Biology,2017,5(1):55-66. doi: 10.1007/s40484-017-0100-y
    [18]
    GARCÍA-JIMÉNEZ B, GARCÍA J L, NOGALES J. FLYCOP: metabolic modeling-based analysis and engineering microbial communities[J]. Bioinformatics,2018,34(17):i954-i963. doi: 10.1093/bioinformatics/bty561
    [19]
    MA Q, BI Y H, WANG E X, et al. Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-L-gulonic acid, the precursor of vitamin C[J]. Journal of Industrial Microbiology & Biotechnology,2019,46(1):21-31.
    [20]
    MACCHI M, FESTA S, NIETO E, et al. Design and evaluation of synthetic bacterial consortia for optimized phenanthrene degradation through the integration of genomics and shotgun proteomics[J]. Biotechnology Reports,2021,29:e00588. doi: 10.1016/j.btre.2021.e00588
    [21]
    FENG S S, GONG L Q, ZHANG Y K, et al. Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage[J]. Bioresource Technology,2021,320:124329. doi: 10.1016/j.biortech.2020.124329
    [22]
    HUANG J M, YANG X N, WU Q H, et al. Application of independent immobilization in benzo[a]pyrene biodegradation by synthetic microbial consortium[J]. Environmental Science and Pollution Research,2019,26(20):21052-21058. doi: 10.1007/s11356-019-05477-4
    [23]
    KONG X X, JIANG J L, QIAO B, et al. The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways[J]. Science of the Total Environment,2019,651:271-280. doi: 10.1016/j.scitotenv.2018.09.187
    [24]
    del VALLE I, FULK E M, KALVAPALLE P, et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences[J]. Frontiers in Microbiology,2021,11:618373. doi: 10.3389/fmicb.2020.618373
    [25]
    VANARSDALE E, TSAO C Y, LIU Y, et al. Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and roundup via rewired Escherichia coli[J]. ACS Sensors,2019,4(5):1180-1184. doi: 10.1021/acssensors.9b00085
    [26]
    CELLO J, PAUL A V, WIMMER E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template[J]. Science,2002,297(5583):1016-1018. doi: 10.1126/science.1072266
    [27]
    GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science,2010,329(5987):52-56. doi: 10.1126/science.1190719
    [28]
    HUTCHISON C A, CHUANG R Y, NOSKOV V N, et al. Design and synthesis of a minimal bacterial genome[J]. Science,2016,351(6280):aad6253. doi: 10.1126/science.aad6253
    [29]
    WU Y, LI B Z, ZHAO M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science,2017,355(6329):eaaf4706. doi: 10.1126/science.aaf4706
    [30]
    XIE Z X, LI B Z, MITCHELL L A, et al. "Perfect" designer chromosome V and behavior of a ring derivative[J]. Science,2017,355(6329):eaaf4704. doi: 10.1126/science.aaf4704
    [31]
    SHAO Y Y, LU N, WU Z F, et al. Creating a functional single-chromosome yeast[J]. Nature,2018,560(7718):331-335. doi: 10.1038/s41586-018-0382-x
    [32]
    BOEKE J D, CHURCH G, HESSEL A, et al. The genome project-write[J]. Science,2016,353(6295):126-127. doi: 10.1126/science.aaf6850
    [33]
    LEDFORD H, CALLAWAY E. Pioneers of revolutionary CRISPR gene editing win chemistry Nobel[J]. Nature,2020,586(7829):346-347. doi: 10.1038/d41586-020-02765-9
    [34]
    WANG D, ZHANG F, GAO G P. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors[J]. Cell,2020,181(1):136-150. doi: 10.1016/j.cell.2020.03.023
    [35]
    STORCH G A. CRISPR tool scales up to interrogate a huge line-up of viral suspects[J]. Nature,2020,582(7811):188-189. doi: 10.1038/d41586-020-01447-w
    [36]
    GAO H R, GADLAGE M J, LAFITTE H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9[J]. Nature Biotechnology,2020,38(5):579-581. doi: 10.1038/s41587-020-0444-0
    [37]
    CHOI S Y, WOO H M. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria[J]. ACS Synthetic Biology,2020,9(9):2351-2361. doi: 10.1021/acssynbio.0c00091
    [38]
    ABDEL-MAWGOUD A M, STEPHANOPOULOS G. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions[J]. Metabolic Engineering,2020,62:106-115. doi: 10.1016/j.ymben.2020.07.008
    [39]
    SMITH C J, CASTANON O, SAID K, et al. Enabling large-scale genome editing at repetitive elements by reducing DNA nicking[J]. Nucleic Acids Research,2020,48(9):5183-5195. doi: 10.1093/nar/gkaa239
    [40]
    ZHAO D D, LI J, LI S W, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology,2021,39(1):35-40. doi: 10.1038/s41587-020-0592-2
    [41]
    KLEINSTIVER B P, PATTANAYAK V, PREW M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature,2016,529(7587):490-495. doi: 10.1038/nature16526
    [42]
    CHEN J S, DAGDAS Y S, KLEINSTIVER B P, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy[J]. Nature,2017,550(7676):407-410. doi: 10.1038/nature24268
    [43]
    SINKINS S P, GOULD F. Gene drive systems for insect disease vectors[J]. Nature Reviews Genetics,2006,7(6):427-435. doi: 10.1038/nrg1870
    [44]
    JAMES A A. Gene drive systems in mosquitoes: rules of the road[J]. Trends in Parasitology,2005,21(2):64-67. doi: 10.1016/j.pt.2004.11.004
    [45]
    KYROU K, HAMMOND A M, GALIZI R, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes[J]. Nature Biotechnology,2018,36(11):1062-1066. doi: 10.1038/nbt.4245
    [46]
    PROWSE T A, ADIKUSUMA F, CASSEY P, et al. A Y-chromosome shredding gene drive for controlling pest vertebrate populations[J]. Elife,2019,8:e41873. doi: 10.7554/eLife.41873
    [47]
    CONKLIN B R. On the road to a gene drive in mammals[J]. Nature,2019,566(7742):43-45. doi: 10.1038/d41586-019-00185-y
    [48]
    NEVE P. Gene drive systems: do they have a place in agricultural weed management[J]. Pest Management Science,2018,74(12):2671-2679. doi: 10.1002/ps.5137
    [49]
    ECKHOFF P A, WENGER E A, GODFRAY H C J, et al. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(2):E255-E264. doi: 10.1073/pnas.1611064114
    [50]
    BEAGHTON A, BEAGHTON P J, BURT A. Vector control with driving Y chromosomes: modelling the evolution of resistance[J]. Malaria Journal,2017,16(1):286. doi: 10.1186/s12936-017-1932-7
    [51]
    COLLINS J P. Gene drives in our future: challenges of and opportunities for using a self-sustaining technology in pest and vector management[J]. BMC Proceedings, 2018, 12(Suppl 8): 9.
    [52]
    JAMES S, COLLINS F H, WELKHOFF P A, et al. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group[J]. American Journal of Tropical Medicine and Hygiene, 2018, 98(Suppl 6): 1-49.
    [53]
    钱万强, 江海燕, 朱庆平, 等.国内外合成生物学资助体系及产业投入分析[J]. 中国基础科学,2014,16(1):47-50. doi: 10.3969/j.issn.1009-2412.2014.01.008

    QIAN W Q, JIANG H Y, ZHU Q P, et al. Analysis of the funding systems and industry investment of synthetic biology in China and main developed countries[J]. China Basic Science,2014,16(1):47-50. doi: 10.3969/j.issn.1009-2412.2014.01.008
    [54]
    刘发鹏.合成生物学: 一种两用技术的机遇和挑战[J]. 科学中国人,2018(17):72-73.
    [55]
    YANG J G, XIE X Q, XIANG N, et al. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(36):8509-8517. doi: 10.1073/pnas.1804992115
    [56]
    WU M R, JUSIAK B, LU T K. Engineering advanced cancer therapies with synthetic biology[J]. Nature Reviews Cancer,2019,19(4):187-195.
    [57]
    MILLER T E, BENEYTON T, SCHWANDER T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science,2020,368(6491):649-654. doi: 10.1126/science.aaz6802
    [58]
    BOLES K S, KANNAN K, GILL J, et al. Digital-to-biological converter for on-demand production of biologics[J]. Nature Biotechnology,2017,35(7):672-675. doi: 10.1038/nbt.3859
    [59]
    MEHR S H M, CRAVEN M, LEONOV A I, et al. A universal system for digitization and automatic execution of the chemical synthesis literature[J]. Science,2020,370(6512):101-108. doi: 10.1126/science.abc2986
    [60]
    关正君, 裴蕾, 马库斯·施密特, 等.合成生物学生物安全风险评价与管理[J]. 生物多样性,2012,20(2):138-150.

    GUAN Z J, PEI L, SCHMIDT M, et al. Assessment and management of biosafety in synthetic biology[J]. Biodiversity Science,2012,20(2):138-150.
    [61]
    TANG T C, THAM E, LIU X Y, et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation[J]. Nature Chemical Biology,2021,17(6):724-731. doi: 10.1038/s41589-021-00779-6
    [62]
    YOO J I, SEPPÄLÄS O, MALLEY M A. Engineered fluoride sensitivity enables biocontainment and selection of genetically-modified yeasts[J]. Nature Communications,2020,11:5459. doi: 10.1038/s41467-020-19271-1
    [63]
    MASELKO M, HEINSCH S C, CHACÓN J M, et al. Engineering species-like barriers to sexual reproduction[J]. Nature Communications,2017,8(1):883. doi: 10.1038/s41467-017-01007-3
    [64]
    YOUNG R E B, PURTON S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii[J]. Plant Biotechnology Journal,2016,14(5):1251-1260. doi: 10.1111/pbi.12490
    [65]
    CAI Y Z, AGMON N, CHOI W J, et al. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(6):1803-1808. ⊗ doi: 10.1073/pnas.1424704112
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article Views(298) PDF Downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return