Volume 12 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WU Y Q,LI M K,TANG Z N,et al.Projection of residential annual water consumption in Hengshui City based on dynamic gray model groups[J].Journal of Environmental Engineering Technology,2022,12(1):267-274 doi: 10.12153/j.issn.1674-991X.20210233
Citation: WU Y Q,LI M K,TANG Z N,et al.Projection of residential annual water consumption in Hengshui City based on dynamic gray model groups[J].Journal of Environmental Engineering Technology,2022,12(1):267-274 doi: 10.12153/j.issn.1674-991X.20210233

Projection of residential annual water consumption in Hengshui City based on dynamic gray model groups

doi: 10.12153/j.issn.1674-991X.20210233
  • Received Date: 2021-06-16
  • To address the randomness and periodicity of the residential water consumption (RWC) data along with overfitting problem caused by the large dispersion of traditional gray model, a dynamic gray model group consisting of five GM(1,1) models was proposed based on gray model theory. Based on the annual RWC data of Hengshui City from 2007 to 2019, the dynamic gray model group was used to project the future changes of annual RWC in Hengshui City during 2020-2030, and meanwhile residual tests and corrections were conducted using the projected results; the dynamic gray model group was compared with five GM(1,1) models to test the model accuracy. The results showed that the projected relative error of the dynamic gray model group was smaller than that of the traditional GM(1, 1) model, implying better accuracy and applicability. The annual RWC in Hengshui approached 17.95 million m3 in 2019 and was expected to increase to 28.62 million m3 in 2030, which indicated that the future RWC in Hengshui City would be at an obvious uptrend, and this result was in line with the future population growth and socio-economic development trend. The projected results of RWC in this study was capable of providing reference for optimal water supply and water resources allocation in Hengshui City.

     

  • loading
  • [1]
    秦欢欢, 赖冬蓉, 万卫, 等.基于系统动力学的北京市需水量预测及缺水分析[J]. 科学技术与工程,2018,18(21):175-182. doi: 10.3969/j.issn.1671-1815.2018.21.027

    QIN H H, LAI D R, WAN W, et al. Water demand prediction and water deficit analysis in Beijing based on system dynamics[J]. Science Technology and Engineering,2018,18(21):175-182. doi: 10.3969/j.issn.1671-1815.2018.21.027
    [2]
    宋帆, 杨晓华, 武翡翡, 等.灰色关联-集对聚类预测模型在吉林省用水量预测中的应用[J]. 水资源与水工程学报,2018,29(3):28-33. doi: 10.11705/j.issn.1672-643X.2018.03.05

    SONG F, YANG X H, WU F F, et al. Application of grey correlation degree-set pair analysis classified prediction method on water consumption prediction of Jilin Province[J]. Journal of Water Resources and Water Engineering,2018,29(3):28-33. doi: 10.11705/j.issn.1672-643X.2018.03.05
    [3]
    牟天蔚, 蒋白懿, 沈丹玉, 等.深度学习框架对城市日供水量预测的研究[J]. 人民黄河,2018,40(9):58-62. doi: 10.3969/j.issn.1000-1379.2018.09.014

    MU T W, JIANG B Y, SHEN D Y, et al. Study on the prediction of deep learning framework for city daily water supply[J]. Yellow River,2018,40(9):58-62. doi: 10.3969/j.issn.1000-1379.2018.09.014
    [4]
    薛文志, 唐德善.改进的GM(1, 1)模型在城市用水量预测中的应用[J]. 水电能源科学,2010,28(11):38-40. doi: 10.3969/j.issn.1000-7709.2010.11.013

    XUE W Z, TANG D S. Application of improved GM(1, 1) model to predicting urban water consumption[J]. Water Resources and Power,2010,28(11):38-40. doi: 10.3969/j.issn.1000-7709.2010.11.013
    [5]
    柳烨, 王孔锋, 陈帝伊.灰色模型结合微粒群算法的城市用水量预测[J]. 人民黄河,2012,34(3):42-44. doi: 10.3969/j.issn.1000-1379.2012.03.016

    LIU Y, WANG K F, CHEN D Y. Urban water consumption prediction by gray model combined with PSO[J]. Yellow River,2012,34(3):42-44. doi: 10.3969/j.issn.1000-1379.2012.03.016
    [6]
    任晔, 徐淑琴.灰色神经网络组合模型在庆安县年降雨量预测中的应用[J]. 节水灌溉,2012(9):24-25.
    [7]
    赵宇哲, 武春友.灰色振荡序列GM(1, 1)模型及在城市用水中的应用[J]. 运筹与管理,2010,19(5):155-159. doi: 10.3969/j.issn.1007-3221.2010.05.025

    ZHAO Y Z, WU C Y. GM(1, 1) model of grey oscillation sequences and its application to urban water consumption forecasting[J]. Operations Research and Management Science,2010,19(5):155-159. doi: 10.3969/j.issn.1007-3221.2010.05.025
    [8]
    唐万梅.基于灰色支持向量机的新型预测模型[J]. 系统工程学报,2006,21(4):410-413. doi: 10.3969/j.issn.1000-5781.2006.04.013

    TANG W M. New forecasting model based on grey support vector machine[J]. Journal of Systems Engineering,2006,21(4):410-413. doi: 10.3969/j.issn.1000-5781.2006.04.013
    [9]
    刘献, 袁旦, 张小丽, 等.基于残差灰色-马尔可夫链的生活用水量预测研究[J]. 人民珠江,2020,41(8):1-6. doi: 10.3969/j.issn.1001-9235.2020.08.001

    LIU X, YUAN D, ZHANG X L, et al. Study on prediction of domestic water consumption based on residual grey Markov chain model[J]. Pearl River,2020,41(8):1-6. doi: 10.3969/j.issn.1001-9235.2020.08.001
    [10]
    杜懿, 麻荣永.不同改进灰色模型在广西年用水量预测中的应用研究[J]. 水资源与水工程学报,2017,28(3):87-90.

    DU Y, MA R Y. Application of different improved grey model on the water consumption prediction in Guangxi[J]. Journal of Water Resources and Water Engineering,2017,28(3):87-90.
    [11]
    白鹏, 龙秋波.3种用水量预测方法在京津冀地区的适用性比较[J]. 水资源保护,2021,37(2):102-107. doi: 10.3880/j.issn.1004-6933.2021.02.016

    BAI P, LONG Q B. Applicability comparison of three water consumption prediction methods in Beijing-Tianjin-Hebei Region[J]. Water Resources Protection,2021,37(2):102-107. doi: 10.3880/j.issn.1004-6933.2021.02.016
    [12]
    刘呈玲, 方红远, 刘志辉.改进的灰色预测模型在区域用水总量预测中的应用[J]. 华北水利水电大学学报(自然科学版),2018,39(2):57-62.

    LIU C L, FANG H Y, LIU Z H. Application of grey system model in prediction of regional water consumption[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2018,39(2):57-62.
    [13]
    唐晓灵, 李竹青.区域工业用水效率及节水潜力研究: 以关中平原城市群为例[J]. 生态经济,2020,36(10):134-140.

    TANG X L, LI Z Q. Research on industrial water efficiency and water saving potential: taking the Guanzhong plain urban agglomeration as an example[J]. Ecological Economy,2020,36(10):134-140.
    [14]
    李如忠, 汪家权, 钱家忠.基于灰色动态模型群法的河流水质预测研究[J]. 水土保持通报,2002,22(4):10-12. doi: 10.3969/j.issn.1000-288X.2002.04.003

    LI R Z, WANG J Q, QIAN J Z. Prediction of river water quality based on gray dynamic model group[J]. Bulletin of Soil and Water Conservation,2002,22(4):10-12. doi: 10.3969/j.issn.1000-288X.2002.04.003
    [15]
    张保祥, 汪家权, 卢朝霞, 等.灰色动态模型群法及其工业取水量预测应用[J]. 水资源与水工程学报,2005,16(3):44-47. doi: 10.3969/j.issn.1672-643X.2005.03.011

    ZHANG B X, WANG J Q, LU Z X, et al. Grey dynamic model group and its application in predicting of industrial water demand[J]. Journal of Water Resources and Water Engineering,2005,16(3):44-47. doi: 10.3969/j.issn.1672-643X.2005.03.011
    [16]
    袁娜, 宋云峰, 王雅欣, 等.基于灰色动态模型群的济宁市需水量预测[J]. 水电能源科学,2014,32(7):33-36.

    YUAN N, SONG Y F, WANG Y X, et al. Water demand forecasting of Jining City based on gray dynamic model groups[J]. Water Resources and Power,2014,32(7):33-36.
    [17]
    王韶伟, 许新宜, 贾香香, 等.基于灰色动态模型群的需水预测研究[J]. 中国农村水利水电,2010(2):29-31.

    WANG S W, XU X Y, JIA X X, et al. Prediction of water demand based on the gray dynamic model group[J]. China Rural Water and Hydropower,2010(2):29-31.
    [18]
    文静, 雷晓云, 朱连勇, 等.改进的灰色动态模型在五家渠市需水预测中的应用[J]. 节水灌溉,2012(2):78-80.

    WEN J, LEI X Y, ZHU L Y, et al. Application of improved grey dynamic model in water demand forecast of Wujiaqu City[J]. Water Saving Irrigation,2012(2):78-80.
    [19]
    CHEN H X. Application study on the prediction of grain output in Huainan by grey GM (1, 1) model[J]. Advance Journal of Food Science and Technology,2016,10(2):95-98. doi: 10.19026/ajfst.10.1805
    [20]
    XIAO X P, GUO H, MAO S H. The modeling mechanism, extension and optimization of grey GM (1, 1) model[J]. Applied Mathematical Modelling,2014,38(5/6):1896-1910.
    [21]
    曹飞.基于灰色残差模型的我国财政收入预测[J]. 财会月刊,2012(21):69-70.
    [22]
    李刚, 黄同愿, 闫河, 等.公路交通事故预测的灰色残差模型[J]. 交通运输工程学报,2009,9(5):88-93. doi: 10.3321/j.issn:1671-1637.2009.05.016

    LI G, HUANG T Y, YAN H, et al. Grey residual error model of highway traffic accident forecast[J]. Journal of Traffic and Transportation Engineering,2009,9(5):88-93. doi: 10.3321/j.issn:1671-1637.2009.05.016
    [23]
    左朝晖, 李绍康, 杨津津, 等.基于GA-BP神经网络的页岩气开发区域水资源承载力研究[J]. 环境工程技术学报,2021,11(1):194-201. doi: 10.12153/j.issn.1674-991X.20200081

    ZUO Z H, LI S K, YANG J J, et al. Research on water resources carrying capacity of shale gas development area based on GA-BP neural network[J]. Journal of Environmental Engineering Technology,2021,11(1):194-201. doi: 10.12153/j.issn.1674-991X.20200081
    [24]
    郝跃颖.衡水市水资源状况及承载力探讨[J]. 水利科技与经济,2017,23(1):58-61. doi: 10.3969/j.issn.1006-7175.2017.01.015

    HAO Y Y. Water resources and carrying capacity of water resources in Hengshui City[J]. Water Conservancy Science and Technology and Economy,2017,23(1):58-61. doi: 10.3969/j.issn.1006-7175.2017.01.015
    [25]
    韩燕, 李海涛.衡水市用水结构与变化趋势分析[J]. 水科学与工程技术,2015(5):25-27. doi: 10.3969/j.issn.1672-9900.2015.05.009

    HAN Y, LI H T. Analyses of water use structure and change trend of Hengshui City[J]. Water Sciences and Engineering Technology,2015(5):25-27. doi: 10.3969/j.issn.1672-9900.2015.05.009
    [26]
    住房和城乡建设部. 中国城市建设统计年鉴(2007—2019年)[M]. 北京: 中国统计出版社, 2007—2019.
    [27]
    LIU X Y, PENG H Q, BAI Y, et al. Tourism flows prediction based on an improved grey GM(1, 1) model[J]. Procedia - Social and Behavioral Sciences,2014,138:767-775. ⊗ doi: 10.1016/j.sbspro.2014.07.256
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(8)

    Article Metrics

    Article Views(540) PDF Downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return