Citation: | WU X Q,YAN B F,DENG Q Y,et al.Research progress of the visible light degradation of organic pollutants over molybdenum disulfide-based heterojunction catalysts[J].Journal of Environmental Engineering Technology,2022,12(3):776-786 doi: 10.12153/j.issn.1674-991X.20210252 |
Photocatalysis is a new technology developed rapidly in recent years, which uses solar energy for energy conversion and environmental purification. Molybdenum disulfide has a layered structure and is the representative of transition metal chalcogenides. It has become a good catalyst because of its narrow band gap, many active sites and large specific surface area, and is widely used in the photocatalytic degradation of organic pollutants. The domestic and international research status of different types of molybdenum disulfide-based heterojunction catalysts (metal oxides, bismuth-based materials, silver-based materials, metal sulfides, graphite carbon nitride, graphene oxide) were introduced. The preparation methods and photocatalytic degradation effects of organic pollutants of molybdenum disulfide-based heterojunction catalysts were compared, and their degradation mechanisms were briefly described. The results showed that the coupling effect of molybdenum disulfide could effectively improve the photocatalytic activity of matrix materials. Future research should continue to focus on the development of high efficient, stable and recyclable molybdenum disulfide-based heterojunction catalysts.
[1] |
WU M H, LI L, LIU N, et al. Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review[J]. Process Safety and Environmental Protection,2018,118:40-58. doi: 10.1016/j.psep.2018.06.025
|
[2] |
SALEH I A, ZOUARI N, AL-GHOUTI M A. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches[J]. Environmental Technology & Innovation,2020,19:101026.
|
[3] |
XIE Y H, REN L L, ZHU X Q, et al. Physical and chemical treatments for removal of perchlorate from water: a review[J]. Process Safety and Environmental Protection,2018,116:180-198. doi: 10.1016/j.psep.2018.02.009
|
[4] |
ZHANG J J, ZHANG S G, LIU B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: a review[J]. Journal of Cleaner Production,2020,250:119507. doi: 10.1016/j.jclepro.2019.119507
|
[5] |
DU J Q, ZHANG B G, LI J X, et al. Decontamination of heavy metal complexes by advanced oxidation processes: a review[J]. Chinese Chemical Letters,2020,31(10):2575-2582. doi: 10.1016/j.cclet.2020.07.050
|
[6] |
CUI E T, YU G Y, HUANG H T, et al. Current advances in MoS2/semiconductor heterojunction with enhanced photocatalytic activity[J]. Current Opinion in Green and Sustainable Chemistry,2017,6:42-47. doi: 10.1016/j.cogsc.2017.05.009
|
[7] |
SHAHRIARI M, DEZFULI A G, SABAEIAN M. Investigation of uniaxial and biaxial strains on the band gap modifications of monolayer MoS2 with tight-binding method[J]. Superlattices and Microstructures,2019,125:34-57. doi: 10.1016/j.spmi.2018.10.001
|
[8] |
吴正颖, 刘谢, 刘劲松, 等.二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展,2019,31(8):1086-1102.
WU Z Y, LIU X, LIU J S, et al. Molybdenum disulfide based composites and their photocatalytic degradation and hydrogen evolution properties[J]. Progress in Chemistry,2019,31(8):1086-1102.
|
[9] |
SINGH A K, KUMAR P, LATE D J, et al. 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects[J]. Applied Materials Today,2018,13:242-270. doi: 10.1016/j.apmt.2018.09.003
|
[10] |
徐晨曦, 胡安俊, 舒朝著, 等.金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程,2020,48(9):34-46. doi: 10.11868/j.issn.1001-4381.2019.000509
XU C X, HU A J, SHU C Z, et al. Application progress of metallic phase of molybdenum disulfide for energy storage and conversion[J]. Journal of Materials Engineering,2020,48(9):34-46. doi: 10.11868/j.issn.1001-4381.2019.000509
|
[11] |
LUO L J, SHI M, ZHAO S M, et al. Hydrothermal synthesis of MoS2 with controllable morphologies and its adsorption properties for bisphenol A[J]. Journal of Saudi Chemical Society,2019,23(6):762-773. doi: 10.1016/j.jscs.2019.01.005
|
[12] |
LUO S W, CULLEN C P, GUO G C, et al. Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition[J]. Applied Surface Science,2020,508:145126. doi: 10.1016/j.apsusc.2019.145126
|
[13] |
MASOUMI Z, TAYEBI M, LEE B K. Ultrasonication-assisted liquid-phase exfoliation enhances photoelectrochemical performance in α-Fe2O3/MoS2 photoanode[J]. Ultrasonics Sonochemistry,2021,72:105403. doi: 10.1016/j.ultsonch.2020.105403
|
[14] |
KUMAR S, MISHRA T. Shock wave induced exfoliation of molybdenum disulfide (MoS2) in various solvents: all-atom molecular dynamics simulation[J]. Journal of Molecular Liquids,2020,314:113671. doi: 10.1016/j.molliq.2020.113671
|
[15] |
YOSHIDA K, KAWASAKI T, de KUWABARA A, et al. In situ electron microscopic observation of electrochemical Li-intercalation into MoS2[J]. Solid State Ionics,2020,357:115488. doi: 10.1016/j.ssi.2020.115488
|
[16] |
刘成. 二硫化钼基复合材料的合成及其光催化性能研究[D]. 西安: 西北大学, 2019.
|
[17] |
HASIJA V, RAIZADA P, THAKUR V K, et al. An overview of strategies for enhancement in photocatalytic oxidative ability of MoS2 for water purification[J]. Journal of Environmental Chemical Engineering,2020,8(5):104307. doi: 10.1016/j.jece.2020.104307
|
[18] |
HONG L, LI J Z, LIU F G, et al. Morphology-controllable fabrication of Ag@MoS2 composites with improved antioxidant activities at low Ag loading[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,596:124722. doi: 10.1016/j.colsurfa.2020.124722
|
[19] |
NI S, YANG L R, QU H N, et al. Tailoring the structure and energy level over transition-metal doped MoS2 towards enhancing 4-nitrophenol reduction reaction[J]. Journal of Environmental Chemical Engineering,2021,9(2):105101. doi: 10.1016/j.jece.2021.105101
|
[20] |
GANG R Q, XU L, XIA Y, et al. Fabrication of MoS2 QDs/ZnO nanosheet 0D/2D heterojunction photocatalysts for organic dyes and gaseous heavy metal removal[J]. Journal of Colloid and Interface Science,2020,579:853-861. doi: 10.1016/j.jcis.2020.06.116
|
[21] |
GUAN Y, WU J, LIU Q Z, et al. Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light[J]. Materials Research Bulletin,2019,120:110579. doi: 10.1016/j.materresbull.2019.110579
|
[22] |
QIANG T T, CHEN L, XIA Y J, et al. Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr(Ⅵ) reduction and dyes degradation[J]. Journal of Cleaner Production,2021,291:125213. doi: 10.1016/j.jclepro.2020.125213
|
[23] |
CAO D D, WANG Q Y, ZHU S X, et al. Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution[J]. Separation and Purification Technology,2021,265:118463. doi: 10.1016/j.seppur.2021.118463
|
[24] |
WANG X Y, YAO Y H, GAO W, et al. High-rate and high conductivity mesoporous TiO2 nano hollow spheres: synergetic effect of structure and oxygen vacancies[J]. Ceramics International,2021,47(10):13572-13581. doi: 10.1016/j.ceramint.2021.01.215
|
[25] |
ZHAO H X, CUI S, LI G D, et al. 1T- and 2H-mixed phase MoS2 nanosheets coated on hollow mesoporous TiO2 nanospheres with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science,2020,567:10-17. doi: 10.1016/j.jcis.2020.01.100
|
[26] |
LIU X F, XING Z P, ZHANG Y, et al. Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance[J]. Applied Catalysis B:Environmental,2017,201:119-127. doi: 10.1016/j.apcatb.2016.08.031
|
[27] |
TANG C M, ZHANG H Y, ZHANG J. Study on photocatalytic activity of MoS2/ZnO composite in visible light[J]. Optoelectronics Letters,2020,16(6):446-450. doi: 10.1007/s11801-020-9227-6
|
[28] |
MEI W, CHEN C S, CHEN X A, et al. Low-temperature construction of MoS2 quantum dots/ZnO spheres and their photocatalytic activity under natural sunlight[J]. Journal of Colloid and Interface Science,2018,530:714-724. doi: 10.1016/j.jcis.2018.07.015
|
[29] |
KUMAR S, SHARMA V, BHATTACHARYYA K, et al. N-doped ZnO-MoS2 binary heterojunctions: the dual role of 2D MoS2 in the enhancement of photostability and photocatalytic activity under visible light irradiation for tetracycline degradation[J]. Materials Chemistry Frontiers,2017,1(6):1093-1106. doi: 10.1039/C6QM00274A
|
[30] |
YU E J, KIM H C, KIM H J, et al. Anisotropic heteronanocrystals of Cu2O-2D MoS2 for efficient visible light driven photocatalysis[J]. Applied Surface Science,2021,538:148159. doi: 10.1016/j.apsusc.2020.148159
|
[31] |
AKBARZADEH E, RAHMAN SETAYESH S, GHOLAMI M R. Investigating the role of MoS2/reduced graphene oxide as cocatalyst on Cu2O activity in catalytic and photocatalytic reactions[J]. New Journal of Chemistry,2017,41(16):7998-8005. doi: 10.1039/C7NJ00528H
|
[32] |
BEYHAQI A, ZENG Q Y, CHANG S, et al. Construction of g-C3N4/WO3/MoS2 ternary nanocomposite with enhanced charge separation and collection for efficient wastewater treatment under visible light[J]. Chemosphere,2020,247:125784. doi: 10.1016/j.chemosphere.2019.125784
|
[33] |
ZENG Y, GUO N, XU X J, et al. Degradation of bisphenol a using peroxymonosulfate activated by WO3@MoS2/Ag hollow nanotubes photocatalyst[J]. Chemosphere,2019,227:589-597. doi: 10.1016/j.chemosphere.2019.04.067
|
[34] |
CHEN J L, LIAO Y, WAN X, et al. A high performance MoO3@MoS2 porous nanorods for adsorption and photodegradation of dye[J]. Journal of Solid State Chemistry,2020,291:121652. doi: 10.1016/j.jssc.2020.121652
|
[35] |
HAO L, JU P, ZHANG Y, et al. Fabrication of hierarchical flower-like BiOI/MoS2 heterostructures with highly enhanced visible-light photocatalytic activities[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,610:125714. doi: 10.1016/j.colsurfa.2020.125714
|
[36] |
GUO S Y, LUO H H, LI Y, et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline[J]. Journal of Alloys and Compounds,2021,852:157026. doi: 10.1016/j.jallcom.2020.157026
|
[37] |
HOU Y D, LIU J S, LI Z Q, et al. Construction of novel BiOCl/MoS2 nanocomposites with Z-scheme structure for enhanced photocatalytic activity[J]. Materials Letters,2018,218:110-114. doi: 10.1016/j.matlet.2018.01.140
|
[38] |
WU D P, WANG X L, WANG H J, et al. Ultrasonic-assisted synthesis of two dimensional BiOCl/MoS2 with tunable band gap and fast charge separation for enhanced photocatalytic performance under visible light[J]. Journal of Colloid and Interface Science,2019,533:539-547. doi: 10.1016/j.jcis.2018.08.084
|
[39] |
DI J, XIA J X, GE Y P, et al. Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres[J]. Dalton Trans,2014,43(41):15429-15438. doi: 10.1039/C4DT01652A
|
[40] |
XIA J X, GE Y P, ZHAO D X, et al. Microwave-assisted synthesis of few-layered MoS2/BiOBr hollow microspheres with superior visible-light-response photocatalytic activity for ciprofloxacin removal[J]. CrystEngComm,2015,17(19):3645-3651. doi: 10.1039/C5CE00347D
|
[41] |
YIN W Q, CAO X J, WANG B, et al. In-situ synthesis of MoS2/BiOBr material via mechanical ball milling for boosted photocatalytic degradation pollutants performance[J]. ChemistrySelect,2021,6(5):928-936. doi: 10.1002/slct.202004316
|
[42] |
RITIKA, KAUR M, UMAR A, et al. Enhanced solar light-mediated photocatalytic degradation of brilliant green dye in aqueous phase using BiPO4 nanospindles and MoS2/BiPO4 nanorods[J]. Journal of Materials Science:Materials in Electronics,2019,30(23):20741-20750. doi: 10.1007/s10854-019-02441-3
|
[43] |
LÜ H, LIU Y M, TANG H B, et al. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles[J]. Applied Surface Science,2017,425:100-106. doi: 10.1016/j.apsusc.2017.06.303
|
[44] |
LI M J, WANG J Y, ZHANG P, et al. Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped Bi2S3@MoS2: experiments and theory[J]. Scientific Reports,2017,7:42484. doi: 10.1038/srep42484
|
[45] |
LIU H Y, WU R, TIAN L, et al. The role of 1T@2H-MoS2 in improving the photocatalytic activity of Bi2S3[J]. Materials Letters,2019,246:214-218. doi: 10.1016/j.matlet.2019.03.023
|
[46] |
CHEN Y J, WANG G F, LI H L, et al. Controlled synthesis and exceptional photoelectrocatalytic properties of Bi2S3/MoS2/Bi2MoO6 ternary hetero-structured porous film[J]. Journal of Colloid and Interface Science,2019,555:214-223. doi: 10.1016/j.jcis.2019.07.097
|
[47] |
KE J, LIU J, SUN H Q, et al. Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation[J]. Applied Catalysis B:Environmental,2017,200:47-55. doi: 10.1016/j.apcatb.2016.06.071
|
[48] |
WANG J Z, JIN J, WANG X G, et al. Facile fabrication of novel BiVO4/Bi2S3/MoS2 n-p heterojunction with enhanced photocatalytic activities towards pollutant degradation under natural sunlight[J]. Journal of Colloid and Interface Science,2017,505:805-815. doi: 10.1016/j.jcis.2017.06.085
|
[49] |
LI L Q, YIN D G, DENG L L, et al. Fabrication of a novel ternary heterojunction composite Ag2MoO4/Ag2S/MoS2 with significantly enhanced photocatalytic performance[J]. New Journal of Chemistry,2021,45(1):223-234. doi: 10.1039/D0NJ04290K
|
[50] |
WU J, ZHOU Y F, NIE W Y, et al. One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications[J]. Journal of Nanoparticle Research,2018,20(1):1-13. doi: 10.1007/s11051-017-4105-2
|
[51] |
CHANG M J, CUI W N, LIU J, et al. One-step synthesis of magnetic recoverable Ag2S/Fe3O4/MoS2 nanocomposites for enhanced visible light photocatalysis[J]. Journal of Materials Science:Materials in Electronics,2020,31(2):1047-1056. doi: 10.1007/s10854-019-02615-z
|
[52] |
LWIN H M, ZHAN W Q, JIA F F, et al. Microwave-assisted hydrothermal synthesis of MoS2-Ag3PO4 nanocomposites as visible light photocatalyst for the degradation of tetracycline hydrochloride[J]. Environmental Technology,2022,43(1):149-162.
|
[53] |
SHARMA M, MOHAPATRA P K, BAHADUR D. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Frontiers of Materials Science,2017,11(4):366-374. doi: 10.1007/s11706-017-0404-x
|
[54] |
CUI Z, SUN Y G, ZHANG Z D, et al. Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth[J]. Materials Research Bulletin,2018,100:345-352. doi: 10.1016/j.materresbull.2018.01.003
|
[55] |
CHEN Y, SU P H, LIU X T, et al. One-pot synthesis of 3D Cu2S-MoS2 nanocomposites by an ionic liquid-assisted strategy with high photocatalytic activity[J]. New Journal of Chemistry,2019,43(1):269-276. doi: 10.1039/C8NJ05229H
|
[56] |
SAJJAD M, TAHIR M B, MUBEEN I, et al. Tailorable and rationally designed MoS2 based heterostructure photocatalyst for efficient photocatalytic degradation of phenol under the visible light[J]. Journal of Inorganic and Organometallic Polymers and Materials,2020,30(10):3965-3972. doi: 10.1007/s10904-020-01538-1
|
[57] |
ZHANG X J, GUO Y C, TIAN J, et al. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity[J]. Applied Catalysis B:Environmental,2018,232:355-364. doi: 10.1016/j.apcatb.2018.03.074
|
[58] |
HARISH S, PRACHI, ARCHANA J, et al. Synergistic interaction of 2D layered MoS2/ZnS nanocomposite for highly efficient photocatalytic activity under visible light irradiation[J]. Applied Surface Science,2019,488:36-45. doi: 10.1016/j.apsusc.2019.05.027
|
[59] |
AKSHATHA R S, SREENIVASA S, PARASHURAM L, et al. Visible-light-induced photochemical hydrogen evolution and degradation of crystal violet dye by interwoven layered MoS2/wurtziteZnS heterostructure photocatalyst[J]. ChemistrySelect,2020,5(23):6918-6926. doi: 10.1002/slct.202001914
|
[60] |
HU X F, DENG F, HUANG W Y, et al. The band structure control of visible-light-driven rGO/ZnS-MoS2 for excellent photocatalytic degradation performance and long-term stability[J]. Chemical Engineering Journal,2018,350:248-256. doi: 10.1016/j.cej.2018.05.182
|
[61] |
AHAMAD T, NAUSHAD M, AL-SAEEDI S I, et al. Fabrication of MoS2/ZnS embedded in N/S doped carbon for the photocatalytic degradation of pesticide[J]. Materials Letters,2020,263:127271. doi: 10.1016/j.matlet.2019.127271
|
[62] |
ALOMAR M, LIU Y L, CHEN W, et al. Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light[J]. Applied Surface Science,2019,480:1078-1088. doi: 10.1016/j.apsusc.2019.03.014
|
[63] |
ZHANG D T, XU T Y, CAO M Y, et al. Facile band alignment of C3N4/CdS/MoS2 sandwich hybrid for efficient charge separation and high photochemical performance under visible-light[J]. Powder Technology,2019,351:222-228. doi: 10.1016/j.powtec.2019.03.043
|
[64] |
ZHAO T, XING Z P, XIU Z Y, et al. Oxygen-doped MoS2 nanospheres/CdS quantum dots/g-C3N4 nanosheets super-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance[J]. ACS Applied Materials & Interfaces,2019,11(7):7104-7111.
|
[65] |
PANT B, PARK M, PARK S J. MoS2/CdS/TiO2 ternary composite incorporated into carbon nanofibers for the removal of organic pollutants from water[J]. Inorganic Chemistry Communications,2019,102:113-119. doi: 10.1016/j.inoche.2019.02.022
|
[66] |
PENG K, WANG H J, LI X Y, et al. One-step hydrothermal growth of MoS2 nanosheets/CdS nanoparticles heterostructures on montmorillonite for enhanced visible light photocatalytic activity[J]. Applied Clay Science,2019,175:86-93. doi: 10.1016/j.clay.2019.04.007
|
[67] |
ACHARYA R, PARIDA K. A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation[J]. Journal of Environmental Chemical Engineering,2020,8(4):103896. doi: 10.1016/j.jece.2020.103896
|
[68] |
PATNAIK S, SAHOO D P, PARIDA K. Photo-catalytic H2 evolution over Au modified mesoporous g-C3N4[J]. Materials Today:Proceedings,2021,35:247-251. doi: 10.1016/j.matpr.2020.05.346
|
[69] |
PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: a review[J]. Carbon,2021,172:682-711. doi: 10.1016/j.carbon.2020.10.073
|
[70] |
YAN X, GAO Q, HUI X Y, et al. Fabrication of g-C3N4/MoS2 nanosheet heterojunction by facile ball milling method and its visible light photocatalytic performance[J]. Rare Metal Materials and Engineering,2018,47(10):3015-3020. doi: 10.1016/S1875-5372(18)30226-1
|
[71] |
TIAN J, CHEN Z Y, JING J P, et al. Enhanced photocatalytic performance of the MoS2/g-C3N4 heterojunction composite prepared by vacuum freeze drying method[J]. Journal of Photochemistry and Photobiology A:Chemistry,2020,390:112260. doi: 10.1016/j.jphotochem.2019.112260
|
[72] |
CHEN W, LIU M, WEI S J, et al. Solid-state synthesis of ultrathin MoS2 as a cocatalyst on mesoporous g-C3N4 for excellent enhancement of visible light photoactivity[J]. Journal of Alloys and Compounds,2020,836:155401. doi: 10.1016/j.jallcom.2020.155401
|
[73] |
LI Y H, LAI Z, HUANG Z J, et al. Fabrication of BiOBr/MoS2/graphene oxide composites for efficient adsorption and photocatalytic removal of tetracycline antibiotics[J]. Applied Surface Science,2021,550:149342. doi: 10.1016/j.apsusc.2021.149342
|
[74] |
CHAKRABARTY S, MUKHERJEE A, BASU S. RGO-MoS2 supported NiCo2O4 catalyst toward solar water splitting and dye degradation[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5238-5247. ⊗
|