Citation: | LI Y Y,GE X H,WANG W J,et al.Progress of technology life cycle assessment and its application trends in carbon neutrality[J].Journal of Environmental Engineering Technology,2022,12(4):1048-1057 doi: 10.12153/j.issn.1674-991X.20210265 |
Technology life cycle assessment (TLCA) can provide methodological support for technological improvement, scientific decision-making and carbon neutrality. CiteSpace software was used to study the research characteristics, changing trends, key areas and evolution paths of TLCA and its research progresses in the field of carbon neutralization in recent 20 years. The results showed that the number of published literature related to TLCA was rising, and had entered a rapid development stage since 2006. The papers mainly focused on Engineering, Ecology, Environmental Science, Engineering Environmental, Science & Technology: Other Topics, Energy & Fuels, Green & Sustainable Science & Technology. The research object, evaluation method and application of TLCA were research hotspots in recent years. The energy production technology, carbon footprints and waste treatment technology were the research focus of TLCA. System, model, framework, uncertainty and other aspects were the key points to improve the evaluation method. Applicability development and comprehensive evaluation of methods became the follow-up development direction. Improving the effectiveness of sustainability, efficiency and decision support was the breakthrough to improve the application of TLCA. Carbon footprint LCA could be used to guide the realization and path selection of technology carbon neutralization goals. The combination of LCA system and other assessment methods was becoming a trend, which could improve the accuracy and effectiveness of comprehensive assessment of technology and provide an effective reference for achieving the goal of carbon neutrality.
[1] |
黄晶.中国2060年实现碳中和目标亟需强化科技支撑[J]. 可持续发展经济导刊,2020(10):15-16.
HUANG J. China's goal of carbon neutrality by 2060 needs to be reinforced by science and technology[J]. China Sustainability Tribune,2020(10):15-16.
|
[2] |
GHISETTI C, QUATRARO F. Green technologies and environmental productivity: a cross-sectoral analysis of direct and indirect effects in Italian regions[J]. Ecological Economics,2017,132:1-13. doi: 10.1016/j.ecolecon.2016.10.003
|
[3] |
BRÄNNLUND R, GHALWASH T, NORDSTRÖM J. Increased energy efficiency and the rebound effect: effects on consumption and emissions[J]. Energy Economics,2007,29(1):1-17. doi: 10.1016/j.eneco.2005.09.003
|
[4] |
BROOKES L. The greenhouse effect: the fallacies in the energy efficiency solution[J]. Energy Policy,1990,18(2):199-201. doi: 10.1016/0301-4215(90)90145-T
|
[5] |
CHANG Y A, HUANG R Z, RIES R J, et al. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China[J]. Energy,2015,86:335-343. doi: 10.1016/j.energy.2015.04.034
|
[6] |
International Orgnaization for Standardization. Environmental management: life cycle assessment: priciples and framework: ISO 14040[S]. Geneva: International Orgnaization for Standardization, 2006.
|
[7] |
MAHMUD R, MONI S M, HIGH K, et al. Integration of techno-economic analysis and life cycle assessment for sustainable process design: a review[J]. Journal of Cleaner Production,2021,317:128247. doi: 10.1016/j.jclepro.2021.128247
|
[8] |
CHANG Y A, HUANG R Z, RIES R J, et al. Shale-to-well energy use and air pollutant emissions of shale gas production in China[J]. Applied Energy,2014,125:147-157. doi: 10.1016/j.apenergy.2014.03.039
|
[9] |
WU J Z, KONG L L, WANG L H, et al. Life cycle assessment of a co-firing power generation system in China[J]. Journal of Biobased Materials and Bioenergy,2016,10(2):129-136. doi: 10.1166/jbmb.2016.1574
|
[10] |
王曰芬. 文献计量法与内容分析法的综合研究[D]. 南京: 南京理工大学, 2007.
|
[11] |
陈香, 李卫民, 刘勤.基于文献计量的近30年国内外土壤微生物研究分析[J]. 土壤学报,2020,57(6):1458-1470.
CHEN X, LI W M, LIU Q. Bibliometric-based analysis of researches on soil microbes at home and abroad in the past 30 years[J]. Acta Pedologica Sinica,2020,57(6):1458-1470.
|
[12] |
张媛, 张艳杰, 朱静, 等.基于文献计量的湿地构建前沿进展[J]. 环境工程技术学报,2021,11(1):107-113. doi: 10.12153/j.issn.1674-991X.20200050
ZHANG Y, ZHANG Y J, ZHU J, et al. A bibliometric analysis of the frontier progress in wetland construction[J]. Journal of Environmental Engineering Technology,2021,11(1):107-113. doi: 10.12153/j.issn.1674-991X.20200050
|
[13] |
BOHN D, ROY-AIKINS J A. On appraising alternative power plant investment proposals: part 1. economic model[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2000,214(6):541-551. doi: 10.1243/0957650001538083
|
[14] |
NAHLIK M J, KAEHR A T, CHESTER M V, et al. Goods movement life cycle assessment for greenhouse gas reduction goals[J]. Journal of Industrial Ecology,2016,20(2):317-328. doi: 10.1111/jiec.12277
|
[15] |
KULCZYCKA J, LELEK Ł, LEWANDOWSKA A, et al. Environmental impacts of energy-efficient pyrometallurgical copper smelting technologies: the consequences of technological changes from 2010 to 2050[J]. Journal of Industrial Ecology,2016,20(2):304-316. doi: 10.1111/jiec.12369
|
[16] |
BERGESEN J D, TÄHKÄMÖ L, GIBON T, et al. Potential long-term global environmental implications of efficient light-source technologies[J]. Journal of Industrial Ecology,2016,20(2):263-275. doi: 10.1111/jiec.12342
|
[17] |
CUBI E, ZIBIN N F, THOMPSON S J, et al. Sustainability of rooftop technologies in cold climates: comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels[J]. Journal of Industrial Ecology,2016,20(2):249-262. doi: 10.1111/jiec.12269
|
[18] |
BEUCKER S, BERGESEN J D, GIBON T. Building energy management systems: global potentials and environmental implications of deployment[J]. Journal of Industrial Ecology,2016,20(2):223-233. doi: 10.1111/jiec.12378
|
[19] |
YU D J, XU Z S, PEDRYCZ W, et al. Information sciences 1968-2016: a retrospective analysis with text mining and bibliometric[J]. Information Sciences,2017,418/419:619-634. doi: 10.1016/j.ins.2017.08.031
|
[20] |
GARVEY T, MOORE E A, BABBITT C W, et al. Comparing ecotoxicity risks for nanomaterial production and release under uncertainty[J]. Clean Technologies and Environmental Policy,2019,21(2):229-242. doi: 10.1007/s10098-018-1648-6
|
[21] |
BIYIK E, ARAZ M, HEPBASLI A, et al. A key review of building integrated photovoltaic (BIPV) systems[J]. Engineering Science and Technology, an International Journal,2017,20(3):833-858. doi: 10.1016/j.jestch.2017.01.009
|
[22] |
GÓRALCZYK M. Life-cycle assessment in the renewable energy sector[J]. Applied Energy,2003,75(3/4):205-211.
|
[23] |
YORK R, ROSA E A, DIETZ T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics,2003,46(3):351-365. doi: 10.1016/S0921-8009(03)00188-5
|
[24] |
衡丽君. 生物质定向热解制多元醇燃料过程模拟及全生命周期碳足迹研究[D]. 南京: 东南大学, 2019.
|
[25] |
李金惠, 刘丽丽, 许晓芳.2019年固体废物处理利用行业发展评述及展望[J]. 中国环保产业,2020(3):15-18. doi: 10.3969/j.issn.1006-5377.2020.03.004
LI J H, LIU L L, XU X F. Review and prospect of the development of solid waste treatment and utilization industry in 2019[J]. China Environmental Protection Industry,2020(3):15-18. doi: 10.3969/j.issn.1006-5377.2020.03.004
|
[26] |
MARIA F D, SAETTA S, LEONARDI D. Life cycle assessment of a PPV plant applied to an existing SUW management system[J]. International Journal of Energy Research,2003,27(5):481-494. doi: 10.1002/er.890
|
[27] |
CHRISTENSEN T H, DAMGAARD A, LEVIS J, et al. Application of LCA modelling in integrated waste management[J]. Waste Management,2020,118:313-322. doi: 10.1016/j.wasman.2020.08.034
|
[28] |
WENTKER M, GREENWOOD M, ASABA M C, et al. A raw material criticality and environmental impact assessment of state-of-the-art and post-lithium-ion cathode technologies[J]. Journal of Energy Storage,2019,26:101022. doi: 10.1016/j.est.2019.101022
|
[29] |
SORUNMU Y, BILLEN P, SPATARI S. A review of thermochemical upgrading of pyrolysis bio-oil: techno-economic analysis, life cycle assessment, and technology readiness[J]. GCB Bioenergy,2020,12(1):4-18. doi: 10.1111/gcbb.12658
|
[30] |
CHAUVY R, MEUNIER N, THOMAS D, et al. Selecting emerging CO2 utilization products for short- to mid-term deployment[J]. Applied Energy,2019,236:662-680. doi: 10.1016/j.apenergy.2018.11.096
|
[31] |
OH J, JUNG D, OH S H, et al. Design, simulation and feasibility study of a combined CO2 mineralization and brackish water desalination process[J]. Journal of CO2 Utilization,2019,34:446-464. doi: 10.1016/j.jcou.2019.07.004
|
[32] |
ROY M, MOHANTY K. A comprehensive review on microalgal harvesting strategies: current status and future prospects[J]. Algal Research,2019,44:101683. doi: 10.1016/j.algal.2019.101683
|
[33] |
ZHANG Y, KANG H, HOU H C, et al. Improved design for textile production process based on life cycle assessment[J]. Clean Technologies and Environmental Policy,2018,20(6):1355-1365. doi: 10.1007/s10098-018-1572-9
|
[34] |
KANNAN R, LEONG K C, OSMAN R, et al. Life cycle energy, emissions and cost inventory of power generation technologies in Singapore[J]. Renewable and Sustainable Energy Reviews,2007,11(4):702-715. doi: 10.1016/j.rser.2005.05.004
|
[35] |
WOLDT W E, DVORAK B I, DAHAB M F. Application of fuzzy set theory to industrial pollution prevention: production system modeling and life cycle assessment[J]. Soft Computing,2003,7(6):419-433. doi: 10.1007/s00500-002-0231-5
|
[36] |
RASHEED R, KHAN N, YASAR A, et al. Design and cost-benefit analysis of a novel anaerobic industrial bioenergy plant in Pakistan[J]. Renewable Energy,2016,90:242-247. doi: 10.1016/j.renene.2016.01.008
|
[37] |
CORONA B, SAN MIGUEL G. Life cycle sustainability analysis applied to an innovative configuration of concentrated solar power[J]. The International Journal of Life Cycle Assessment,2019,24(8):1444-1460. doi: 10.1007/s11367-018-1568-z
|
[38] |
MONI S M, MAHMUD R, HIGH K, et al. Life cycle assessment of emerging technologies: a review[J]. Journal of Industrial Ecology,2020,24(1):52-63. doi: 10.1111/jiec.12965
|
[39] |
ONG M S, CHANG M Y, FOONG M J, et al. An integrated approach for sustainability assessment with hybrid AHP-LCA-PI techniques for chitosan-based TiO2 nanotubes production[J]. Sustainable Production and Consumption,2020,21:170-181. doi: 10.1016/j.spc.2019.12.001
|
[40] |
COLLOTTA M, CHAMPAGNE P, TOMASONI G, et al. Critical indicators of sustainability for biofuels: an analysis through a life cycle sustainabilty assessment perspective[J]. Renewable and Sustainable Energy Reviews,2019,115:109358. doi: 10.1016/j.rser.2019.109358
|
[41] |
赵娟, 黄蓓佳, 柴径阳, 等.多晶硅光伏组件生产可持续性评价[J]. 环境科学研究,2016,29(10):1554-1559.
ZHAO J, HUANG B J, CHAI J Y, et al. Sustainability assessment of China's multi-crystalline silicon photovoltaic modules production[J]. Research of Environmental Sciences,2016,29(10):1554-1559.
|
[42] |
王博. 秸秆能源化利用技术的综合评价研究: 基于模糊层次分析-VIKOR模型和生命周期可持续性评价[D]. 长春: 吉林大学, 2020.
|
[43] |
ANSHASSI M, TOWNSEND T G. Reviewing the underlying assumptions in waste LCA models to identify impacts on waste management decision making[J]. Journal of Cleaner Production,2021,313:127913. doi: 10.1016/j.jclepro.2021.127913
|
[44] |
BOHNES F A, HAUSCHILD M Z, SCHLUNDT J, et al. Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development[J]. Reviews in Aquaculture,2019,11(4):1061-1079. doi: 10.1111/raq.12280
|
[45] |
郑秀君, 胡彬.我国生命周期评价(LCA)文献综述及国外最新研究进展[J]. 科技进步与对策,2013,30(6):155-160. doi: 10.6049/kjjbydc.2012020392
ZHENG X J, HU B. Domestic literature review and the latest overseas research progress of life cycle assessment[J]. Science & Technology Progress and Policy,2013,30(6):155-160. doi: 10.6049/kjjbydc.2012020392
|
[46] |
杨健, 陆雍森, 施鼎方.运用生命周期分析(LCA)评估和选择废水处理工艺[J]. 工业用水与废水,2000,31(3):4-6. doi: 10.3969/j.issn.1009-2455.2000.03.002
YANG J A, LU Y S, SHI D F. Application of life-cycle analysis (LCA) in evaluation and selection of wastewater treatment processes[J]. Industrial Water & Wastewater,2000,31(3):4-6. doi: 10.3969/j.issn.1009-2455.2000.03.002
|
[47] |
查京民, 张剑.应用LCA评价建筑工程对环境的影响[J]. 环境科学动态,2001,26(3):11-15.
|
[48] |
杨建新, 王如松, 刘晶茹.中国产品生命周期影响评价方法研究[J]. 环境科学学报,2001,21(2):234-237. doi: 10.3321/j.issn:0253-2468.2001.02.022
YANG J X, WANG R S, LIU J R. Methodology of life cycle impact assessment for Chinese products[J]. Acta Scientiae Circumstantiae,2001,21(2):234-237. doi: 10.3321/j.issn:0253-2468.2001.02.022
|
[49] |
刘夏璐, 王洪涛, 陈建, 等.中国生命周期参考数据库的建立方法与基础模型[J]. 环境科学学报,2010,30(10):2136-2144.
LIU X L, WANG H T, CHEN J, et al. Method and basic model for development of Chinese reference life cycle database[J]. Acta Scientiae Circumstantiae,2010,30(10):2136-2144.
|
[50] |
莫华, 张天柱.生命周期清单分析的数据质量评价[J]. 环境科学研究,2003,16(5):55-58. doi: 10.3321/j.issn:1001-6929.2003.05.015
MO H, ZHANG T Z. Data quality assessment of life cycle inventory analysis[J]. Research of Environmental Sciences,2003,16(5):55-58. doi: 10.3321/j.issn:1001-6929.2003.05.015
|
[51] |
RIDOUTT B, FANTKE P, PFISTER S, et al. Making sense of the minefield of footprint indicators[J]. Environmental Science & Technology,2015,49(5):2601-2603.
|
[52] |
YANG E, OMAR MOHAMED H, PARK S G, et al. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies[J]. Bioresource Technology,2021,320:124363. doi: 10.1016/j.biortech.2020.124363
|
[53] |
ZINI G, TARTARINI P. Hybrid systems for solar hydrogen: a selection of case-studies[J]. Applied Thermal Engineering,2009,29(13):2585-2595. doi: 10.1016/j.applthermaleng.2008.12.029
|
[54] |
NAKAJIMA K, INO H, HALADA K.Life cycle assessment of beverage cans[J]. 日本金屬學會誌,2000,64(8):591-596.
|
[55] |
AYCAGUER A C, LEV-ON M, WINER A M. Reducing carbon dioxide emissions with enhanced oil recovery projects: a life cycle assessment approach[J]. Energy & Fuels,2001,15(2):303-308.
|
[56] |
LENZEN M, MUNKSGAARD J. Energy and CO2 life-cycle analyses of wind turbines: review and applications[J]. Renewable Energy,2002,26(3):339-362. doi: 10.1016/S0960-1481(01)00145-8
|
[57] |
WEITZ K A, THORNELOE S A, NISHTALA S R, et al. The impact of municipal solid waste management on greenhouse gas emissions in the United States[J]. Journal of the Air & Waste Management Association,2002,52(9):1000-1011.
|
[58] |
BERG S, KARJALAINEN T. Comparison of greenhouse gas emissions from forest operations in Finland and Sweden[J]. Forestry:an International Journal of Forest Research,2003,76(3):271-284. doi: 10.1093/forestry/76.3.271
|
[59] |
GUSTAVSSON L, MADLENER R. CO2 mitigation costs of large-scale bioenergy technologies in competitive electricity markets[J]. Energy,2003,28(14):1405-1425. doi: 10.1016/S0360-5442(03)00126-9
|
[60] |
CORTI A, LOMBARDI L. Biomass integrated gasification combined cycle with reduced CO2 emissions: performance analysis and life cycle assessment (LCA)[J]. Energy,2004,29(12/13/14/15):2109-2124.
|
[61] |
MEIER P J, WILSON P P H, KULCINSKI G L, et al. US electric industry response to carbon constraint: a life-cycle assessment of supply side alternatives[J]. Energy Policy,2005,33(9):1099-1108. doi: 10.1016/j.enpol.2003.11.009
|
[62] |
van der GIESEN C, CUCURACHI S, GUINÉE J, et al. A critical view on the current application of LCA for new technologies and recommendations for improved practice[J]. Journal of Cleaner Production,2020,259:120904. doi: 10.1016/j.jclepro.2020.120904
|
[63] |
BONOU A, LAURENT A, OLSEN S I. Life cycle assessment of onshore and offshore wind energy-from theory to application[J]. Applied Energy,2016,180:327-337. doi: 10.1016/j.apenergy.2016.07.058
|
[64] |
ČUČEK L, KLEMEŠ J J, KRAVANJA Z. A review of footprint analysis tools for monitoring impacts on sustainability[J]. Journal of Cleaner Production,2012,34:9-20. doi: 10.1016/j.jclepro.2012.02.036
|
[65] |
LOPES SILVA D A, de OLIVEIRA J A, SAAVEDRA Y M B, et al. Combined MFA and LCA approach to evaluate the metabolism of service polygons: a case study on a university campus[J]. Resources, Conservation and Recycling,2015,94:157-168. ⊕ doi: 10.1016/j.resconrec.2014.11.001
|