Citation: | XU Z Z,LI Y F,CHENG J Y,et al.Trends analysis and targets study of the water quality in Tianjin coastal waters[J].Journal of Environmental Engineering Technology,2022,12(5):1378-1388 doi: 10.12153/j.issn.1674-991X.20210302 |
Mastering the seawater quality variation trends and formulating scientific and reasonable water quality targets are helpful to the accurate implementation of the total amount control of pollutant discharge in key sea areas and formulate effective pollutant control policies. The water quality variation trends analysis model and the water quality target determination method were established by using the Generalized Additive Models (GAM), based on the nutrient concentration and precipitation data of Tianjin coastal waters for the 2007-2018 periods. The water quality targets of Tianjin coastal waters were put forward on the basis of evaluating the variation trend of inorganic nitrogen and reactive phosphate concentrations at 12 stations in Tianjin coastal waters, and the rationality and accessibility of the water quality targets were analyzed. The results showed that the concentration of inorganic nitrogen in the coastal waters of Tianjin generally showed a downward trend, with a decreasing ratio of 13.19% and a 95% confidence interval ranging from −30.37% to 3.96% in 2013-2018, compared with 2007-2012. The concentration of reactive phosphorus generally showed an upward trend, with an upward ratio of 7.01% and a 95% confidence interval ranging from −11.43% to 25.45%, which had not recovered to the average level from 2007 to 2012. It was proposed that the proportion of Grade Ⅰ-Ⅱ water quality of inorganic nitrogen and reactive phosphorus in Tianjin coastal waters would reach 75% in 2025. It was suggested to implement water quality zoning management, and the Tianjin coastal waters were divided into seven zones. Other measures such as further strengthening the prevention and control of agricultural non-point sources pollution, enhancing the upstream and downstream collaborative governance and inter provincial joint prevention and treatment of water pollution were also proposed to continually improve the water quality of the coastal waters of Tianjin.
[1] |
韩文辉, 党晋华, 赵颖, 等.流域水质目标管理技术研究概述[J]. 环境与可持续发展,2020,45(5):133-137. doi: 10.19758/j.cnki.issn1673-288x.202005133
HAN W H, DANG J H, ZHAO Y, et al. Research summary on the basin water quality target management technique[J]. Environment and Sustainable Development,2020,45(5):133-137. doi: 10.19758/j.cnki.issn1673-288x.202005133
|
[2] |
国家环境保护局. 海水水质标准: GB 3097—1997[S]. 北京: 环境科学出版社, 2004.
|
[3] |
夏桂敏, 张思瑶.基于季节性Kendall检验法的白石水库水质变化趋势[J]. 南水北调与水利科技,2015,13(6):1069-1074. doi: 10.13476/j.cnki.nsbdqk.2015.06.010
XIA G M, ZHANG S Y. Water quality variation in the Baishi Reservoir based on seasonal Kendall test method[J]. South-to-North Water Transfers and Water Science & Technology,2015,13(6):1069-1074. doi: 10.13476/j.cnki.nsbdqk.2015.06.010
|
[4] |
林佳敏, 陈金良, 林晶晶, 等.BP神经网络和ARIMA模型对污水处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报,2019,9(5):573-578. doi: 10.12153/j.issn.1674-991X.2019.03.261
LIN J M, CHEN J L, LIN J J, et al. The simulation and prediction of TN in wastewater treatment effluent using BP neural network and ARIMA model[J]. Journal of Environmental Engineering Technology,2019,9(5):573-578. doi: 10.12153/j.issn.1674-991X.2019.03.261
|
[5] |
王英伟, 马树才.基于ARIMA和LSTM混合模型的时间序列预测[J]. 计算机应用与软件,2021,38(2):291-298. doi: 10.3969/j.issn.1000-386x.2021.02.047
WANG Y W, MA S C. Time series forecasting based on ARIMA_DLSTM hybrid model[J]. Computer Applications and Software,2021,38(2):291-298. doi: 10.3969/j.issn.1000-386x.2021.02.047
|
[6] |
李文静, 王潇潇.基于简化型LSTM神经网络的时间序列预测方法[J]. 北京工业大学学报,2021,47(5):480-488.
LI W J, WANG X X. Time series prediction method based on simplified LSTM neural network[J]. Journal of Beijing University of Technology,2021,47(5):480-488.
|
[7] |
HIRSCH R M, SLACK J R, SMITH R A. Techniques of trend analysis for monthly water quality data[J]. Water Resources Research,1982,18(1):107-121. doi: 10.1029/WR018i001p00107
|
[8] |
ZHANG Q, MURPHY R R, TIAN R, et al. Chesapeake Bay's water quality condition has been recovering: insights from a multimetric indicator assessment of thirty years of tidal monitoring data[J]. Science of the Total Environment,2018,637/638:1617-1625. doi: 10.1016/j.scitotenv.2018.05.025
|
[9] |
HASTIE T, TIBSHIRANI R. Generalized additive models[J]. Statistical Science,1986,1(3):297-310.
|
[10] |
HARDING L W, GALLEGOS C L, PERRY E S, et al. Long-term trends of nutrients and phytoplankton in Chesapeake Bay[J]. Estuaries and Coasts,2016,39(3):664-681. doi: 10.1007/s12237-015-0023-7
|
[11] |
QIAO Y H, FENG J F, CUI S F, et al. Long-term changes in nutrients, chlorophyll a and their relationships in a semi-enclosed eutrophic ecosystem, Bohai Bay, China[J]. Marine Pollution Bulletin,2017,117(1/2):222-228.
|
[12] |
RICHARDS R, CHALOUPKA M, STRAUSS D, et al. Using generalized additive modelling to understand the drivers of long-term nutrient dynamics in the broadwater estuary (a subtropical estuary), Gold Coast, Australia[J]. Journal of Coastal Research,2014,298:1321-1329. doi: 10.2112/JCOASTRES-D-12-00190.1
|
[13] |
VARANKA S, HJORT J. Spatio-temporal aspects of the environmental factors affecting water quality in boreal rivers[J]. Environmental Earth Sciences,2016,76(1):1-13.
|
[14] |
ZHANG H X, HUO S L, YEAGER K M, et al. Phytoplankton response to climate changes and anthropogenic activities recorded by sedimentary pigments in a shallow eutrophied lake[J]. Science of the Total Environment,2019,647:1398-1409. doi: 10.1016/j.scitotenv.2018.08.081
|
[15] |
ECCLES R, ZHANG H, HAMILTON D, et al. Trends in water quality in a subtropical Australian river-estuary system: responses to damming, climate variability and wastewater discharges[J]. Journal of Environmental Management,2020,269:110796. doi: 10.1016/j.jenvman.2020.110796
|
[16] |
SONG W P, DAI Y Y, DONG Y B. Study of the water quality in Liaohe Park based on the model of GAM[J]. Marine Science Bulletin,2012,14(1):90-96.
|
[17] |
ROBSON B J, DOURDET V. Prediction of sediment, particulate nutrient and dissolved nutrient concentrations in a dry tropical river to provide input to a mechanistic coastal water quality model[J]. Environmental Modelling & Software,2015,63:97-108.
|
[18] |
天津市规划和自然资源局. 2015年天津市生态环境状况公报[A/OL]. (2016-09-30)[2021-06-23]. http://ghhzrzy.tj.gov.cn/zwgk_143/tzgg/202012/t20201206_4496986.html.
|
[19] |
PENG S T, DAI M X, HU Y D, et al. Long-term (1996-2006) variation of nitrogen and phosphorus and their spatial distributions in Tianjin coastal seawater[J]. Bulletin of Environmental Contamination and Toxicology,2009,83(3):416-421. doi: 10.1007/s00128-009-9680-1
|
[20] |
PENG S T. The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: temporal-spatial variations, sources, pollution statuses, and ecological risks[J]. Marine Pollution Bulletin,2015,95(1):445-451. doi: 10.1016/j.marpolbul.2015.03.032
|
[21] |
LIU X H, LIU D Y, WANG Y J, et al. Temporal and spatial variations and impact factors of nutrients in Bohai Bay, China[J]. Marine Pollution Bulletin,2019,140:549-562. doi: 10.1016/j.marpolbul.2019.02.011
|
[22] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋调查规范 第1部分: 总则: GB/T 12763.1—2007[S]. 北京: 中国标准出版社, 2008.
|
[23] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋监测规范 第4部分: 海水分析: GB 17378.4—2007[S]. 北京: 中国标准出版社, 2008.
|
[24] |
天津市统计局. 2014天津统计年鉴[M]. 北京: 中国统计出版社, 2014.
|
[25] |
WOOD S N. Generalized Additive Models[M]. New York: Chapman and Hall/CRC, 2017.
|
[26] |
WOOD S N. Mgcv: GAMs and generalized ridge regression for R[J]. R News,2001,1:20-25.
|
[27] |
MARRA G, WOOD S N. Coverage properties of confidence intervals for generalized additive model components[J]. Scandinavian Journal of Statistics,2012,39(1):53-74. doi: 10.1111/j.1467-9469.2011.00760.x
|
[28] |
WOOD S N. On p-values for smooth components of an extended generalized additive model[J]. Biometrika,2012,100(1):221-228.
|
[29] |
CHU J T, XIA J, XU C Y, et al. Spatial and temporal variability of daily precipitation in Haihe River Basin, 1958-2007[J]. Journal of Geographical Sciences,2010,20(2):248-260. doi: 10.1007/s11442-010-0248-0
|
[30] |
ZHANG J P, ZHI M M. Effects of basin nutrient discharge variations coupled with climate change on water quality in Lake Erhai, China[J]. Environmental Science and Pollution Research International,2020,27(35):43700-43710. doi: 10.1007/s11356-020-09179-0
|
[31] |
MURPHY R R, PERRY E, HARCUM J, et al. A Generalized Additive Model approach to evaluating water quality: Chesapeake Bay case study[J]. Environmental Modelling & Software,2019,118:1-13.
|
[32] |
RAO C R. Linear statistical inference and its applications[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 1973.
|
[33] |
宋兵魁, 齐树亭, 李斯, 等.渤海湾氮、磷营养盐在水体和沉积物中的分布特征及其相互关系[J]. 海洋学研究,2019,37(1):83-90. doi: 10.3969/j.issn.1001-909X.2019.01.011
SONG B K, QI S T, LI S, et al. Spatial distribution of nitrogen and phosphorus in waters and sediments in Bohai Bay and their correlation[J]. Journal of Marine Sciences,2019,37(1):83-90. doi: 10.3969/j.issn.1001-909X.2019.01.011
|
[34] |
乔延龙, 殷小亚, 孙艺, 等.天津市海洋生态文明建设研究[J]. 海洋开发与管理,2018,35(6):71-75. doi: 10.3969/j.issn.1005-9857.2018.06.016
QIAO Y L, YIN X Y, SUN Y, et al. The construction of marine ecological civilization in Tianjin[J]. Ocean Development and Management,2018,35(6):71-75. doi: 10.3969/j.issn.1005-9857.2018.06.016
|
[35] |
唐山统计年鉴委员会. 2019唐山市统计年鉴[J]. 北京: 中国统计出版社, 2019.
|
[36] |
李冕, 赵辉, 鲍晨光, 等.改进的IDW插值模型在海水水质评价中的应用[J]. 海洋环境科学,2014,33(2):258-261.
LI M, ZHAO H, BAO C G, et al. Application of an improving IDW interpolation in seawater quality assessment[J]. Marine Environmental Science,2014,33(2):258-261.
|
[37] |
国务院关于印发《水污染防治行动计划》的通知[A/OL]. (2015-05-04)[2021-6-24]. http://www.hnsx.gov.cn/zwgk/40033/40043/40063/40068/content_2777912.html.
|
[38] |
生态环境部 发展改革委 自然资源部关于印发《渤海综合治理攻坚战行动计划》的通知[A/OL]. (2018-11-30)[2021-06-25]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201812/t20181211_684232.html.
|
[39] |
天津市生态环境局. 2020年天津市生态环境状况公报[A/OL]. (2021-06-22)[2021-06-23]. http://sthj.tj.gov.cn/YWGZ7406/HJGL7886/HJTJ7803/202106/t20210622_5483949.html.pdf.
|
[40] |
KUBO A, HASHIHAMA F, KANDA J, et al. Long-term variability of nutrient and dissolved organic matter concentrations in Tokyo Bay between 1989 and 2015[J]. Limnology and Oceanography, 2019, 64(Suppl 1): 209-222.
|
[41] |
NISHIKAWA T, HORI Y, NAGAI S, et al. Nutrient and phytoplankton dynamics in Harima-nada, Eastern Seto Inland Sea, Japan during a 35-year period from 1973 to 2007[J]. Estuaries and Coasts,2010,33(2):417-427. doi: 10.1007/s12237-009-9198-0
|
[42] |
BERGSTRÖM L, AHTIAINEN H, AVELLAN L, et al. HELCOM state of the Baltic Sea: second HELCOM holistic assessment 2011-2016[R/OL]//Baltic Sea Environment Proceedings 155, 2018[2021-06-26].https://helcom.fi/media/publications/BSEP155.pdf.
|
[43] |
HELCOM. Dissolved inorganic nitrogen (DIN) [R/OL]. HELCOM core indicator report. [2021-06-26].https://helcom.fi/media/core%20indicators/Dissolved-inorganic-nitrogen-DIN-HELCOM-core-indicator-2018.pdf.
|
[44] |
HELCOM. Dissolved inorganic phosphorus (DIP) [R/OL]//HELCOM core indicator report. 2018[2021-06-26].https://helcom.fi/media/core%20indicators/Dissolved-inorganic-phosphorus-DIP-HELCOM-core-indicator-2018.pdf.
|
[45] |
XU Z Z, JI Z X, LIANG B, et al. Estimate of nutrient sources and transport into Bohai Bay in China from a lower plain urban watershed using a SPARROW model[J]. Environmental Science and Pollution Research International,2021,28(20):25733-25747. ◇ doi: 10.1007/s11356-020-11932-4
|