Volume 12 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LU C L,CHANG H,SUN F H.Progress on the detection technology of free radicals in waters[J].Journal of Environmental Engineering Technology,2022,12(1):70-80 doi: 10.12153/j.issn.1674-991X.20210322
Citation: LU C L,CHANG H,SUN F H.Progress on the detection technology of free radicals in waters[J].Journal of Environmental Engineering Technology,2022,12(1):70-80 doi: 10.12153/j.issn.1674-991X.20210322

Progress on the detection technology of free radicals in waters

doi: 10.12153/j.issn.1674-991X.20210322
  • Received Date: 2021-07-14
  • The chemical properties of free radicals are highly active and easy to cause redox reaction of gain and loss of electrons, which is an important factor for the degradation of pollutants in environmental waters. Environmental identification and analysis of free radicals are of great significance to reveal the degradation and transformation mechanism of pollutants in the environment. However, due to extremely low environmental concentration, high reactive activity and short life of free radicals, coupled with the interference of complex environmental matrices, their environmental analysis has been the focus and difficulty of the research. Meanwhile, most studies at present focus on some known free radicals, but there are few studies on the identification of unknown free radicals. In this study, on the basis of systematically summarizing the detection methods and application status of typical radicals, the advantages and disadvantages of different detection methods were expounded, especially for the detection methods suitable for typical free radicals such as hydroxyl free radicals in natural waters. It was proposed that spin capture combined with mass spectrometry, which could simultaneously detect many known radicals and identify unknown free radicals with high specificity and sensitivity, would be the research direction of radical detection in natural waters.

     

  • loading
  • [1]
    WANG G Y, IRADUKUNDA Y, SHI G F, et al. Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere[J]. Journal of Environmental Sciences,2021,99:324-335. doi: 10.1016/j.jes.2020.06.038
    [2]
    FUCHS H, DORN H P, BACHNER M, et al. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration[J]. Atmospheric Measurement Techniques,2012,5(7):1611-1626. doi: 10.5194/amt-5-1611-2012
    [3]
    SCHLOSSER E, BOHN B, BRAUERS T, et al. Intercomparison of two hydroxyl radical measurement techniques at the atmosphere simulation chamber SAPHIR[J]. Journal of Atmospheric Chemistry,2007,56(2):187-205. doi: 10.1007/s10874-006-9049-3
    [4]
    WANG G Y, JIA S M, NIU X L, et al. Detection of peroxyl radicals from polluted air by free radical reaction combined with liquid chromatography signal amplification technique[J]. Journal of Separation Science,2018,41(9):1930-1937. doi: 10.1002/jssc.201701152
    [5]
    LIANG C J, CHEN Y J, CHANG K J. Evaluation of persulfate oxidative wet scrubber for removing BTEX gases[J]. Journal of Hazardous Materials,2009,164(2/3):571-579.
    [6]
    QIU Q, LI G X, DAI Y, et al. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation[J]. Journal of Hazardous Materials,2020,396:122733. doi: 10.1016/j.jhazmat.2020.122733
    [7]
    CANONICA S, KOHN T, MAC M, et al. Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds[J]. Environmental Science & Technology,2005,39(23):9182-9188.
    [8]
    SHAKED Y, ROSE A. Seas of superoxide[J]. Science,2013,340(6137):1176-1177. doi: 10.1126/science.1240195
    [9]
    HAO Z Y, MA J Z, MIAO C Y, et al. Carbonate radical oxidation of cylindrospermopsin (cyanotoxin): kinetic studies and mechanistic consideration[J]. Environmental Science & Technology,2020,54(16):10118-10127.
    [10]
    LIU Y Z, SUN H W, ZHANG L Q, et al. Photodegradation behaviors of 17β-estradiol in different water matrixes[J]. Process Safety and Environmental Protection,2017,112:335-341. doi: 10.1016/j.psep.2017.08.044
    [11]
    WANG Y F, GENG Q J, YANG J M, et al. Hybrid system of flocculation-photocatalysis for the decolorization of crystal violet, reactive red X-3B, and acid orange Ⅱ dye[J]. ACS Omega,2020,5(48):31137-31145. doi: 10.1021/acsomega.0c04285
    [12]
    KANG J, DUAN X G, ZHOU L, et al. Carbocatalytic activation of persulfate for removal of antibiotics in water solutions[J]. Chemical Engineering Journal,2016,288:399-405. doi: 10.1016/j.cej.2015.12.040
    [13]
    WANG M W, ZHAO Z Q, ZHANG Y B. Sustainable strategy for enhancing anaerobic digestion of waste activated sludge: driving dissimilatory iron reduction with Fenton sludge[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):2220-2230.
    [14]
    COMNINELLIS C, KAPALKA A, MALATO S, et al. Advanced oxidation processes for water treatment: advances and trends for R&D[J]. Journal of Chemical Technology & Biotechnology,2008,83(6):769-776.
    [15]
    许若梦, 吴桐, 锁瑞娟, 等.基于不同自由基的高级氧化技术对水中诺氟沙星的去除效果[J]. 环境工程技术学报,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177

    XU R M, WU T, SUO R J, et al. Removal performance of norfloxacin from waters by advanced oxidation processes based on different free radicals[J]. Journal of Environmental Engineering Technology,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
    [16]
    安继斌, 夏春秋, 陈红宇, 等.UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究,2018,31(1):130-135.

    AN J B, XIA C Q, CHEN H Y, et al. Activation of persulfate by irradiated magnetite: implications for abatement of atrazine in aqueous solution[J]. Research of Environmental Sciences,2018,31(1):130-135.
    [17]
    王一凡, 李小蝶, 侯美茹, 等.锰基氧化物活化过硫酸盐降解水中有机污染物的研究进展[J]. 环境科学研究,2021,34(8):1899-1908.

    WANG Y F, LI X D, HOU M R, et al. Activation of persulfate with Mn-based oxides for degradation of organic pollutants in water: a review[J]. Research of Environmental Sciences,2021,34(8):1899-1908.
    [18]
    CHENG F C, JEN J F, TSAI T H. Hydroxyl radical in living systems and its separation methods[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2002,781(1/2):481-496.
    [19]
    VIONE D, FALLETTI G, MAURINO V, et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J]. Environmental Science & Technology,2006,40(12):3775-3781.
    [20]
    吴建林, 袁莉, 毛学锋, 等.用水杨酸为捕获剂测定辉光放电等离子体中产生的羟基自由基[J]. 西北师范大学学报(自然科学版),2007,43(3):53-56.

    WU J L, YUAN L, MAO X F, et al. Determination of hydroxyl radical produced by glow discharge plasma with salicylic acid trapping[J]. Journal of Northwest Normal University (Natural Science),2007,43(3):53-56.
    [21]
    YANG X, ZHAN M J, KONG L R, et al. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions[J]. Journal of Environmental Sciences ,2004,16(4):687-689.
    [22]
    ZHAO H Q, GAO J H, ZHOU W ,et al. Quantitative detection of hydroxyl radicals in Fenton system by UV-vis spectrophotometry[J]. Analytical Methods,2015,7(13):5447-5453. doi: 10.1039/C5AY00514K
    [23]
    王金刚, 王西奎, 国伟林, 等.亚甲蓝光度法测定羟自由基[J]. 理化检验-化学分册,2007,43(6):495-497.

    WANG J G, WANG X K, GUO W L, et al. Photometric determination of hydroxyl free radical by its reaction with methylene blue[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2007,43(6):495-497.
    [24]
    颜军, 苟小军, 邹全付, 等.分光光度法测定Fenton反应产生的羟基自由基[J]. 成都大学学报(自然科学版),2009,28(2):91-93,103.

    YAN J, GOU X J, ZOU Q F, et al. Determination of hydroxyl radical generating from Fenton reaction by spectrophotometry[J]. Journal of Chengdu University (Natural Science Edition),2009,28(2):91-93,103.
    [25]
    张乃东, 郑威, 彭永臻.褪色光度法测定芬顿体系中产生的羟自由基[J]. 分析化学,2003,31(5):552-554. doi: 10.3321/j.issn:0253-3820.2003.05.009

    ZHANG N D, ZHENG W, PENG Y Z. Determination of hydroxyl radical in Fenton system by decoloring spectrophotometry[J]. Chinese Journal of Analytical Chemistry,2003,31(5):552-554. doi: 10.3321/j.issn:0253-3820.2003.05.009
    [26]
    付燕, 王爱香, 马东平, 等.Fe(phen)32+光度法测定辉光放电等离子体中产生的羟基自由基[J]. 西北师范大学学报(自然科学版),2007,43(3):49-52.

    FU Y, WANG A X, MA D P, et al. Determination of hydroxyl radical in glow discharge plasma by Fe(phen)32+ spectrophotometry[J]. Journal of Northwest Normal University (Natural Science),2007,43(3):49-52.
    [27]
    姜艳丽, 刘惠玲, 姜兆华, 等.TiO2/Ti光电催化体系中羟自由基的测定[J]. 材料科学与工艺,2006,14(2):162-164,170. doi: 10.3969/j.issn.1005-0299.2006.02.015

    JIANG Y L, LIU H L, JIANG Z H, et al. Determination of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic oxidation system[J]. Materials Science and Technology,2006,14(2):162-164,170. doi: 10.3969/j.issn.1005-0299.2006.02.015
    [28]
    潘光建, 张曾, 黄干强.过氧化氢漂白过程中羟自由基定量分析的研究[J]. 中国造纸学报,2006,21(3):41-47. doi: 10.3321/j.issn:1000-6842.2006.03.011

    PAN G J, ZHANG Z, HUANG G Q. Quantitative analysis of hydroxyl radicals in high temperature/alkali hydrogen peroxide system[J]. Transactions of China Pulp and Paper,2006,21(3):41-47. doi: 10.3321/j.issn:1000-6842.2006.03.011
    [29]
    YLDZ G, DEMIRYÜREK A T. Ferrous iron-induced luminol chemiluminescence: a method for hydroxyl radical study[J]. Journal of Pharmacological and Toxicological Methods,1998,39(3):179-184. doi: 10.1016/S1056-8719(98)00025-2
    [30]
    SUN T, JIA Z S, de XU Z. Different hydroxyl radical scavenging activity of water-soluble β-alanine C60 adducts[J]. Bioorganic & Medicinal Chemistry Letters,2004,14(7):1779-1781.
    [31]
    MILLER C J, ROSE A L, WAITE T D. Phthalhydrazide chemiluminescence method for determination of hydroxyl radical production: modifications and adaptations for use in natural systems[J]. Analytical Chemistry,2011,83(1):261-268. doi: 10.1021/ac1022748
    [32]
    徐向荣, 王文华, 李华斌.化学发光法测定Fenton反应中的羟自由基及其应用[J]. 环境科学,1998,19(2):53-56.

    XU X R, WANG W H, LI H B. Determination of hydroxyl radicals in Fenton reaction by chemiluminescent method and its application[J]. Chinese Journal of Enviromental Science,1998,19(2):53-56.
    [33]
    孙涛, 周冬香, 毛芳, 等.流动注射化学发光法对超氧阴离子自由基O2 ·和羟基自由基·OH的检测[J]. 食品工业科技,2006,27(11):182-184,187. doi: 10.3969/j.issn.1002-0306.2006.11.060

    SUN T, ZHOU D X, MAO F, et al. Analysis of superoxide anion radical O2 · and hydroxyl radical ·OH by flow injection chemilluminescence[J]. Science and Technology of Food Industry,2006,27(11):182-184,187. doi: 10.3969/j.issn.1002-0306.2006.11.060
    [34]
    YUAN J C, SHILLER A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection[J]. Analytical Chemistry,1999,71(10):1975-1980. doi: 10.1021/ac981357c
    [35]
    FUJIWARA K, KUMATA H, KANDO N, et al. Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural waters[J]. International Journal of Environmental Analytical Chemistry,2006,86(5):337-346. doi: 10.1080/03067310500352312
    [36]
    何超. 氧自由基化学发光体系的研究及其应用[D]. 重庆: 西南大学, 2006.
    [37]
    焦昕倩. O3/UV方法自由基的产生规律及对苯酚废水的处理[D]. 长春: 吉林大学, 2006.
    [38]
    冯楚楚, 潘水红, 史文霞.活性氧测定分析方法的建立以及应用[J]. 辽宁化工,2016,45(8):1106-1108.

    FENG C C, PAN S H, SHI W X. Establishment and application of analytical method for determination of reactive oxygen species[J]. Liaoning Chemical Industry,2016,45(8):1106-1108.
    [39]
    TAI C, XIAO C Y, ZHAO T Q, et al. Determination of hydroxyl radicals photochemically generated in surface waters under sunlight by high performance liquid chromatography with fluorescence detection[J]. Analytical Methods,2014,6(20):8193-8199. doi: 10.1039/C4AY01300J
    [40]
    胡筱敏, 孙兆楠, 董嫦娥, 等.周期换向电解过程中羟基自由基的产生及测定[J]. 东北大学学报(自然科学版),2012,33(12):1774-1777. doi: 10.12068/j.issn.1005-3026.2012.12.026

    HU X M, SUN Z N, DONG C E, et al. Generation and determination of hydroxyl radicals from electrolytic process with periodically reversing[J]. Journal of Northeastern University (Natural Science),2012,33(12):1774-1777. doi: 10.12068/j.issn.1005-3026.2012.12.026
    [41]
    董楠娅.五元杂环类添加剂对铝酸钠溶液种分过程的影响[D].长沙:中南大学,2008.
    [42]
    KILINC E. Determination of the hydroxyl radical by its adduct formation with phenol and liquid chromatography/electrochemical detection[J]. Talanta,2005,65(4):876-881. doi: 10.1016/j.talanta.2004.08.019
    [43]
    BRAUN A M, FRIMMEL F H, HOIGNÉ J. Singlet oxygen analysis in irradiated surface waters[J]. International Journal of Environmental Analytical Chemistry,1986,27(1/2):137-149.
    [44]
    HAAG W R, HOIGNE´ J, GASSMAN E, et al. Singlet oxygen in surface waters: Part I. furfuryl alcohol as a trapping agent[J]. Chemosphere,1984,13(5/6):631-640.
    [45]
    VAUGHAN P P, BLOUGH N V. Photochemical formation of hydroxyl radical by constituents of natural waters[J]. Environmental Science & Technology,1998,32(19):2947-2953.
    [46]
    BARRERA A, TZOMPANTZI F, PADILLA J M, et al. Reusable PdO/Al2O3-Nd2O3 photocatalysts in the UV photodegradation of phenol[J]. Applied Catalysis B:Environmental,2014,144:362-368. doi: 10.1016/j.apcatb.2013.07.024
    [47]
    SANDER W W. P-Benzoquinone O-oxide[J]. The Journal of Organic Chemistry,1988,53(9):2091-2093. doi: 10.1021/jo00244a045
    [48]
    MATYASOVSZKY N, TIAN M, CHEN A C. Kinetic study of the electrochemical oxidation of salicylic acid and salicylaldehyde using UV/vis spectroscopy and multivariate calibration[J]. The Journal of Physical Chemistry A,2009,113(33):9348-9353. doi: 10.1021/jp904602j
    [49]
    WOLS B A, HOFMAN-CARIS C H M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water[J]. Water Research,2012,46(9):2815-2827. doi: 10.1016/j.watres.2012.03.036
    [50]
    MORALES-ROQUE J, CARRILLO-CÁRDENAS M, JAYANTHI N, et al. Theoretical and experimental interpretations of phenol oxidation by the hydroxyl radical[J]. Journal of Molecular Structure:THEOCHEM,2009,910(1/2/3):74-79.
    [51]
    SUN L, CHEN H, ABDULLA H A, et al. Estimating hydroxyl radical photochemical formation rates in natural waters during long-term laboratory irradiation experiments[J]. Environmental Science Processes & Impacts,2014,16(4):757-763.
    [52]
    ÅGREN A, REICHARD P, BONNICHSEN R, et al. The complex formation between iron(Ⅲ) ion and some phenols. II: salicylic acid and p-amino salicylic acid[J]. Acta Chemica Scandinavica,1954,8:1059-1072.
    [53]
    COOLEN S A J, HUF F A, REIJENGA J C. Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1998,717(1/2):119-124.
    [54]
    WANG Q J, DING F, ZHU N N, et al. Determination of hydroxyl radical by capillary zone electrophoresis with amperometric detection[J]. Journal of Chromatography A,2003,1016(1):123-128. doi: 10.1016/S0021-9673(03)01294-9
    [55]
    程宏英, 曹玉华.毛细管电泳-电化学检测法测定硫酸铜-维生素C反应体系中的羟基自由基和菊花的抗氧化活性[J]. 色谱,2007,25(5):681-685. doi: 10.3321/j.issn:1000-8713.2007.05.012

    CHENG H Y, CAO Y H. Determination of hydroxyl radical in CuSO4-vitamin C reaction system and scavenging activities of Chrysanthemum using capillary electrophoresis with electrochemical detection[J]. Chinese Journal of Chromatography,2007,25(5):681-685. doi: 10.3321/j.issn:1000-8713.2007.05.012
    [56]
    张卫东. 毛细管电泳—电化学检测在环境和药物分析中的应用研究[D]. 上海: 华东师范大学, 2007.
    [57]
    赵淑锐, 杨源, 郑美青, 等.基于Fenton反应产生的羟自由基检测方法比较[J]. 实验技术与管理,2020,37(12):67-71.

    ZHAO S R, YANG Y, ZHENG M Q, et al. Comparison of detection methods of hydroxyl radicals based on Fenton reaction[J]. Experimental Technology and Management,2020,37(12):67-71.
    [58]
    FENG Y, WU D L, ZHOU Y, et al. A metal-free method of generating sulfate radicals through direct interaction of hydroxylamine and peroxymonosulfate: mechanisms, kinetics, and implications[J]. Chemical Engineering Journal,2017,330:906-913. doi: 10.1016/j.cej.2017.08.034
    [59]
    CASHMAN M A, KIRSCHENBAUM L, HOLOWACHUK J, et al. Identification of hydroxyl and sulfate free radicals involved in the reaction of 1, 4-dioxane with peroxone activated persulfate oxidant[J]. Journal of Hazardous Materials,2019,380:120875. doi: 10.1016/j.jhazmat.2019.120875
    [60]
    孙霞. 铜、铁对水体中阿特拉津光降解影响的研究[D]. 大连: 大连理工大学, 2010.
    [61]
    ZHOU Y, WANG X L, ZHU C Y, et al. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation[J]. Water Research,2018,142:208-216. doi: 10.1016/j.watres.2018.06.002
    [62]
    SUEISHI Y, MIYAZONO K, KOZAI K. Effects of substituent and external pressure on spin trapping rates of carbon dioxide anion, sulfur trioxide anion, hydroxyl, and ethyl radicals with various PBN- and DMPO-type spin traps[J]. Zeitschrift Für Physikalische Chemie,2014,228(9):927-938.
    [63]
    JANZEN E G, WANG Y Y, SHETTY R V. ChemInform abstract: spin trapping with α-pyridyl 1-OXIDE n-tert-butyl nitrones in aqueous solutions. a unique electron spin resonance spectrum for the hydroxyl radical adduct[J]. Chemischer Informationsdienst,1978,9(33):2923-2935.
    [64]
    HIDEG É, SPETEA C, VASS I. Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition: studies with spin trapping EPR spectroscopy[J]. Biochimica et Biophysica Acta (BBA) : Bioenergetics,1994,1186(3):143-152. doi: 10.1016/0005-2728(94)90173-2
    [65]
    ZAMORA P L, VILLAMENA F A. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO): 3. sulfur dioxide, sulfite, and sulfate radical anions[J]. Journal of Physical Chemistry A,2012,116(26):7210-7218. doi: 10.1021/jp3039169
    [66]
    VILLAMENA F A, LOCIGNO E J, ROCKENBAUER A, et al. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO): 2. carbonate radical anion[J]. Journal of Physical Chemistry A,2007,111(2):384-391. doi: 10.1021/jp065692d
    [67]
    BONINI M G, RADI R, FERRER-SUETA G, et al. Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide[J]. Journal of Biological Chemistry,1999,274(16):10802-10806. doi: 10.1074/jbc.274.16.10802
    [68]
    CARNEY J M, FLOYD R A. PBN, DMPO, and POBN compositions and method of use thereof for inhibition of age-associated oxidation: US5405874[P]. 1995-04-11.
    [69]
    POU S, RAMOS C L, GLADWELL T, et al. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical[J]. Analytical Biochemistry,1994,217(1):76-83. doi: 10.1006/abio.1994.1085
    [70]
    BURNS J M, COOPER W J, FERRY J L, et al. Methods for reactive oxygen species (ROS) detection in aqueous environments[J]. Aquatic Sciences,2012,74(4):683-734. doi: 10.1007/s00027-012-0251-x
    [71]
    STOLZE K, UDILOVA N, ROSENAU T, et al. Spin adduct formation from lipophilic EMPO-derived spin traps with various oxygen- and carbon-centered radicals[J]. Biochemical Pharmacology,2005,69(2):297-305. doi: 10.1016/j.bcp.2004.09.021
    [72]
    HIDEG É, SPETEA C, VASS I. Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy[J]. Photosynthesis Research,1994,39(2):191-199. doi: 10.1007/BF00029386
    [73]
    KLAUSCHENZ E, HASELOFF R F, VOLODARSKII L B, et al. Spin trapping using 2, 2-dimethyl-2H-imidazole-1-oxides[J]. Free Radical Research,1994,20(2):103-111. doi: 10.3109/10715769409147507
    [74]
    ROUBAUD V, LAURICELLA R, TUCCIO B, et al. Decay of superoxide spin adducts of new PBN-type phosphorylated nitrones[J]. Research on Chemical Intermediates,1996,22(4):405-416. doi: 10.1163/156856796X00098
    [75]
    TUCCIO B, ZEGHDAOUI A, FINET J P, et al. Use of new β-phosphorylated nitrones for the spin trapping of free radicals[J]. Research on Chemical Intermediates,1996,22(4):393-404. doi: 10.1163/156856796X00089
    [76]
    PODMORE I, CUNLIFFE L, HESHMATI M. Rapid detection of free radicals using spin trapping and MALDI-TOF mass spectrometry[J]. Journal of Chemical Research,2013,37(1):45-47. doi: 10.3184/174751912X13548917858338
    [77]
    BARTALIS J, ZHAO Y L, FLORA J W, et al. Carbon-centered radicals in cigarette smoke: acyl and alkylaminocarbonyl radicals[J]. Analytical Chemistry,2009,81(2):631-641. doi: 10.1021/ac801969f
    [78]
    REIS A, DOMINGUES M R M, OLIVEIRA M M, et al. Identification of free radicals by spin trapping with DEPMPO and MCPIO using tandem mass spectrometry[J]. European Journal of Mass Spectrometry (Chichester, England),2009,15(6):689-703. doi: 10.1255/ejms.1026
    [79]
    GUO Q, QIAN S Y, MASON R P. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS[J]. Journal of the American Society for Mass Spectrometry,2003,14(8):862-871. doi: 10.1016/S1044-0305(03)00336-2
    [80]
    SIMÕES C, DOMINGUES P, DOMINGUES M R M. Identification of free radicals in oxidized and glycoxidized phosphatidylethanolamines by spin trapping combined with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2012,26(8):931-939. doi: 10.1002/rcm.6186
    [81]
    LU P N, KU D L, HUANG X W, et al. A sensitive method for the determination of ultra trace levels of reactive bromine species in water using LC-MS/MS[J]. Talanta,2019,199:567-572. doi: 10.1016/j.talanta.2019.03.020
    [82]
    DOMINGUES M R M, DOMINGUES P, REIS A, et al. Identification of oxidation products and free radicals of tryptophan by mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2003,14(4):406-416. doi: 10.1016/S1044-0305(03)00127-2
    [83]
    JURVA U, WIKSTRÖM H V, BRUINS A P. Electrochemically assisted Fenton reaction: reaction of hydroxyl radicals with xenobiotics followed by on-line analysis with high-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2002,16(20):1934-1940. doi: 10.1002/rcm.808
    [84]
    WANG Y, LIU M S, ZHU Y J, et al. Identifying the tobacco related free radicals by UPCC-QTOF-MS with radical trapping method in mainstream cigarette smoke[J]. Talanta,2016,160:106-112. doi: 10.1016/j.talanta.2016.07.002
    [85]
    DOMINGUES P, DOMINGUES M R M, AMADO F M L, et al. Detection and characterization of hydroxyl radical adducts by mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2001,12(11):1214-1219. doi: 10.1016/S1044-0305(01)00310-5
    [86]
    IMARAM W, GERSCH C, KIM K M, et al. Radicals in the reaction between peroxynitrite and uric acid identified by electron spin resonance spectroscopy and liquid chromatography mass spectrometry[J]. Free Radical Biology and Medicine,2010,49(2):275-281. doi: 10.1016/j.freeradbiomed.2010.04.010
    [87]
    QI F, CHU W, XU B B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental,2013,134/135:324-332. doi: 10.1016/j.apcatb.2013.01.038
    [88]
    YAO Y J, CHEN H, LIAN C, et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. Journal of Hazardous Materials,2016,314:129-139. doi: 10.1016/j.jhazmat.2016.03.089
    [89]
    BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1988,17(2):513-886. doi: 10.1063/1.555805
    [90]
    ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process[J]. Environmental Science & Technology,2015,49(21):12941-12950.
    [91]
    LIU Y, GUO H G, ZHANG Y L, et al. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation[J]. Environmental Pollution,2019,252:1042-1050. doi: 10.1016/j.envpol.2019.05.157
    [92]
    WANG J L, WANG S Z. Reactive species in advanced oxidation processes: formation, identification and reaction mechanism[J]. Chemical Engineering Journal,2020,401:126158. doi: 10.1016/j.cej.2020.126158
    [93]
    MANZOOR K, MISHRA S K, PODMORE I D. Detection and identification of ethanal-derived spin-trapped free radicals using headspace thermal desorption gas chromatography-mass spectrometry (TD-GC-MS)[J]. Free Radical Research,2020,54(10):745-755. doi: 10.1080/10715762.2020.1841183
    [94]
    MISTRY P, NAJIM N, PURDIE A, et al. Indirect detection of hydroxyl radicals using spin trapping and gas chromatography-mass spectrometry[J]. Journal of Chemical Research Synopses,2008(7):395-397. □
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article Views(1052) PDF Downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return