Citation: | LU C L,CHANG H,SUN F H.Progress on the detection technology of free radicals in waters[J].Journal of Environmental Engineering Technology,2022,12(1):70-80 doi: 10.12153/j.issn.1674-991X.20210322 |
[1] |
WANG G Y, IRADUKUNDA Y, SHI G F, et al. Hydroxyl, hydroperoxyl free radicals determination methods in atmosphere and troposphere[J]. Journal of Environmental Sciences,2021,99:324-335. doi: 10.1016/j.jes.2020.06.038
|
[2] |
FUCHS H, DORN H P, BACHNER M, et al. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration[J]. Atmospheric Measurement Techniques,2012,5(7):1611-1626. doi: 10.5194/amt-5-1611-2012
|
[3] |
SCHLOSSER E, BOHN B, BRAUERS T, et al. Intercomparison of two hydroxyl radical measurement techniques at the atmosphere simulation chamber SAPHIR[J]. Journal of Atmospheric Chemistry,2007,56(2):187-205. doi: 10.1007/s10874-006-9049-3
|
[4] |
WANG G Y, JIA S M, NIU X L, et al. Detection of peroxyl radicals from polluted air by free radical reaction combined with liquid chromatography signal amplification technique[J]. Journal of Separation Science,2018,41(9):1930-1937. doi: 10.1002/jssc.201701152
|
[5] |
LIANG C J, CHEN Y J, CHANG K J. Evaluation of persulfate oxidative wet scrubber for removing BTEX gases[J]. Journal of Hazardous Materials,2009,164(2/3):571-579.
|
[6] |
QIU Q, LI G X, DAI Y, et al. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation[J]. Journal of Hazardous Materials,2020,396:122733. doi: 10.1016/j.jhazmat.2020.122733
|
[7] |
CANONICA S, KOHN T, MAC M, et al. Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds[J]. Environmental Science & Technology,2005,39(23):9182-9188.
|
[8] |
SHAKED Y, ROSE A. Seas of superoxide[J]. Science,2013,340(6137):1176-1177. doi: 10.1126/science.1240195
|
[9] |
HAO Z Y, MA J Z, MIAO C Y, et al. Carbonate radical oxidation of cylindrospermopsin (cyanotoxin): kinetic studies and mechanistic consideration[J]. Environmental Science & Technology,2020,54(16):10118-10127.
|
[10] |
LIU Y Z, SUN H W, ZHANG L Q, et al. Photodegradation behaviors of 17β-estradiol in different water matrixes[J]. Process Safety and Environmental Protection,2017,112:335-341. doi: 10.1016/j.psep.2017.08.044
|
[11] |
WANG Y F, GENG Q J, YANG J M, et al. Hybrid system of flocculation-photocatalysis for the decolorization of crystal violet, reactive red X-3B, and acid orange Ⅱ dye[J]. ACS Omega,2020,5(48):31137-31145. doi: 10.1021/acsomega.0c04285
|
[12] |
KANG J, DUAN X G, ZHOU L, et al. Carbocatalytic activation of persulfate for removal of antibiotics in water solutions[J]. Chemical Engineering Journal,2016,288:399-405. doi: 10.1016/j.cej.2015.12.040
|
[13] |
WANG M W, ZHAO Z Q, ZHANG Y B. Sustainable strategy for enhancing anaerobic digestion of waste activated sludge: driving dissimilatory iron reduction with Fenton sludge[J]. ACS Sustainable Chemistry & Engineering,2018,6(2):2220-2230.
|
[14] |
COMNINELLIS C, KAPALKA A, MALATO S, et al. Advanced oxidation processes for water treatment: advances and trends for R&D[J]. Journal of Chemical Technology & Biotechnology,2008,83(6):769-776.
|
[15] |
许若梦, 吴桐, 锁瑞娟, 等.基于不同自由基的高级氧化技术对水中诺氟沙星的去除效果[J]. 环境工程技术学报,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
XU R M, WU T, SUO R J, et al. Removal performance of norfloxacin from waters by advanced oxidation processes based on different free radicals[J]. Journal of Environmental Engineering Technology,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
|
[16] |
安继斌, 夏春秋, 陈红宇, 等.UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究,2018,31(1):130-135.
AN J B, XIA C Q, CHEN H Y, et al. Activation of persulfate by irradiated magnetite: implications for abatement of atrazine in aqueous solution[J]. Research of Environmental Sciences,2018,31(1):130-135.
|
[17] |
王一凡, 李小蝶, 侯美茹, 等.锰基氧化物活化过硫酸盐降解水中有机污染物的研究进展[J]. 环境科学研究,2021,34(8):1899-1908.
WANG Y F, LI X D, HOU M R, et al. Activation of persulfate with Mn-based oxides for degradation of organic pollutants in water: a review[J]. Research of Environmental Sciences,2021,34(8):1899-1908.
|
[18] |
CHENG F C, JEN J F, TSAI T H. Hydroxyl radical in living systems and its separation methods[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences,2002,781(1/2):481-496.
|
[19] |
VIONE D, FALLETTI G, MAURINO V, et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J]. Environmental Science & Technology,2006,40(12):3775-3781.
|
[20] |
吴建林, 袁莉, 毛学锋, 等.用水杨酸为捕获剂测定辉光放电等离子体中产生的羟基自由基[J]. 西北师范大学学报(自然科学版),2007,43(3):53-56.
WU J L, YUAN L, MAO X F, et al. Determination of hydroxyl radical produced by glow discharge plasma with salicylic acid trapping[J]. Journal of Northwest Normal University (Natural Science),2007,43(3):53-56.
|
[21] |
YANG X, ZHAN M J, KONG L R, et al. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions[J]. Journal of Environmental Sciences ,2004,16(4):687-689.
|
[22] |
ZHAO H Q, GAO J H, ZHOU W ,et al. Quantitative detection of hydroxyl radicals in Fenton system by UV-vis spectrophotometry[J]. Analytical Methods,2015,7(13):5447-5453. doi: 10.1039/C5AY00514K
|
[23] |
王金刚, 王西奎, 国伟林, 等.亚甲蓝光度法测定羟自由基[J]. 理化检验-化学分册,2007,43(6):495-497.
WANG J G, WANG X K, GUO W L, et al. Photometric determination of hydroxyl free radical by its reaction with methylene blue[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2007,43(6):495-497.
|
[24] |
颜军, 苟小军, 邹全付, 等.分光光度法测定Fenton反应产生的羟基自由基[J]. 成都大学学报(自然科学版),2009,28(2):91-93,103.
YAN J, GOU X J, ZOU Q F, et al. Determination of hydroxyl radical generating from Fenton reaction by spectrophotometry[J]. Journal of Chengdu University (Natural Science Edition),2009,28(2):91-93,103.
|
[25] |
张乃东, 郑威, 彭永臻.褪色光度法测定芬顿体系中产生的羟自由基[J]. 分析化学,2003,31(5):552-554. doi: 10.3321/j.issn:0253-3820.2003.05.009
ZHANG N D, ZHENG W, PENG Y Z. Determination of hydroxyl radical in Fenton system by decoloring spectrophotometry[J]. Chinese Journal of Analytical Chemistry,2003,31(5):552-554. doi: 10.3321/j.issn:0253-3820.2003.05.009
|
[26] |
付燕, 王爱香, 马东平, 等.Fe(phen)32+光度法测定辉光放电等离子体中产生的羟基自由基[J]. 西北师范大学学报(自然科学版),2007,43(3):49-52.
FU Y, WANG A X, MA D P, et al. Determination of hydroxyl radical in glow discharge plasma by Fe(phen)32+ spectrophotometry[J]. Journal of Northwest Normal University (Natural Science),2007,43(3):49-52.
|
[27] |
姜艳丽, 刘惠玲, 姜兆华, 等.TiO2/Ti光电催化体系中羟自由基的测定[J]. 材料科学与工艺,2006,14(2):162-164,170. doi: 10.3969/j.issn.1005-0299.2006.02.015
JIANG Y L, LIU H L, JIANG Z H, et al. Determination of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic oxidation system[J]. Materials Science and Technology,2006,14(2):162-164,170. doi: 10.3969/j.issn.1005-0299.2006.02.015
|
[28] |
潘光建, 张曾, 黄干强.过氧化氢漂白过程中羟自由基定量分析的研究[J]. 中国造纸学报,2006,21(3):41-47. doi: 10.3321/j.issn:1000-6842.2006.03.011
PAN G J, ZHANG Z, HUANG G Q. Quantitative analysis of hydroxyl radicals in high temperature/alkali hydrogen peroxide system[J]. Transactions of China Pulp and Paper,2006,21(3):41-47. doi: 10.3321/j.issn:1000-6842.2006.03.011
|
[29] |
YLDZ G, DEMIRYÜREK A T. Ferrous iron-induced luminol chemiluminescence: a method for hydroxyl radical study[J]. Journal of Pharmacological and Toxicological Methods,1998,39(3):179-184. doi: 10.1016/S1056-8719(98)00025-2
|
[30] |
SUN T, JIA Z S, de XU Z. Different hydroxyl radical scavenging activity of water-soluble β-alanine C60 adducts[J]. Bioorganic & Medicinal Chemistry Letters,2004,14(7):1779-1781.
|
[31] |
MILLER C J, ROSE A L, WAITE T D. Phthalhydrazide chemiluminescence method for determination of hydroxyl radical production: modifications and adaptations for use in natural systems[J]. Analytical Chemistry,2011,83(1):261-268. doi: 10.1021/ac1022748
|
[32] |
徐向荣, 王文华, 李华斌.化学发光法测定Fenton反应中的羟自由基及其应用[J]. 环境科学,1998,19(2):53-56.
XU X R, WANG W H, LI H B. Determination of hydroxyl radicals in Fenton reaction by chemiluminescent method and its application[J]. Chinese Journal of Enviromental Science,1998,19(2):53-56.
|
[33] |
孙涛, 周冬香, 毛芳, 等.流动注射化学发光法对超氧阴离子自由基O2 −·和羟基自由基·OH的检测[J]. 食品工业科技,2006,27(11):182-184,187. doi: 10.3969/j.issn.1002-0306.2006.11.060
SUN T, ZHOU D X, MAO F, et al. Analysis of superoxide anion radical O2 −· and hydroxyl radical ·OH by flow injection chemilluminescence[J]. Science and Technology of Food Industry,2006,27(11):182-184,187. doi: 10.3969/j.issn.1002-0306.2006.11.060
|
[34] |
YUAN J C, SHILLER A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection[J]. Analytical Chemistry,1999,71(10):1975-1980. doi: 10.1021/ac981357c
|
[35] |
FUJIWARA K, KUMATA H, KANDO N, et al. Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural waters[J]. International Journal of Environmental Analytical Chemistry,2006,86(5):337-346. doi: 10.1080/03067310500352312
|
[36] |
何超. 氧自由基化学发光体系的研究及其应用[D]. 重庆: 西南大学, 2006.
|
[37] |
焦昕倩. O3/UV方法自由基的产生规律及对苯酚废水的处理[D]. 长春: 吉林大学, 2006.
|
[38] |
冯楚楚, 潘水红, 史文霞.活性氧测定分析方法的建立以及应用[J]. 辽宁化工,2016,45(8):1106-1108.
FENG C C, PAN S H, SHI W X. Establishment and application of analytical method for determination of reactive oxygen species[J]. Liaoning Chemical Industry,2016,45(8):1106-1108.
|
[39] |
TAI C, XIAO C Y, ZHAO T Q, et al. Determination of hydroxyl radicals photochemically generated in surface waters under sunlight by high performance liquid chromatography with fluorescence detection[J]. Analytical Methods,2014,6(20):8193-8199. doi: 10.1039/C4AY01300J
|
[40] |
胡筱敏, 孙兆楠, 董嫦娥, 等.周期换向电解过程中羟基自由基的产生及测定[J]. 东北大学学报(自然科学版),2012,33(12):1774-1777. doi: 10.12068/j.issn.1005-3026.2012.12.026
HU X M, SUN Z N, DONG C E, et al. Generation and determination of hydroxyl radicals from electrolytic process with periodically reversing[J]. Journal of Northeastern University (Natural Science),2012,33(12):1774-1777. doi: 10.12068/j.issn.1005-3026.2012.12.026
|
[41] |
董楠娅.五元杂环类添加剂对铝酸钠溶液种分过程的影响[D].长沙:中南大学,2008.
|
[42] |
KILINC E. Determination of the hydroxyl radical by its adduct formation with phenol and liquid chromatography/electrochemical detection[J]. Talanta,2005,65(4):876-881. doi: 10.1016/j.talanta.2004.08.019
|
[43] |
BRAUN A M, FRIMMEL F H, HOIGNÉ J. Singlet oxygen analysis in irradiated surface waters[J]. International Journal of Environmental Analytical Chemistry,1986,27(1/2):137-149.
|
[44] |
HAAG W R, HOIGNE´ J, GASSMAN E, et al. Singlet oxygen in surface waters: Part I. furfuryl alcohol as a trapping agent[J]. Chemosphere,1984,13(5/6):631-640.
|
[45] |
VAUGHAN P P, BLOUGH N V. Photochemical formation of hydroxyl radical by constituents of natural waters[J]. Environmental Science & Technology,1998,32(19):2947-2953.
|
[46] |
BARRERA A, TZOMPANTZI F, PADILLA J M, et al. Reusable PdO/Al2O3-Nd2O3 photocatalysts in the UV photodegradation of phenol[J]. Applied Catalysis B:Environmental,2014,144:362-368. doi: 10.1016/j.apcatb.2013.07.024
|
[47] |
SANDER W W. P-Benzoquinone O-oxide[J]. The Journal of Organic Chemistry,1988,53(9):2091-2093. doi: 10.1021/jo00244a045
|
[48] |
MATYASOVSZKY N, TIAN M, CHEN A C. Kinetic study of the electrochemical oxidation of salicylic acid and salicylaldehyde using UV/vis spectroscopy and multivariate calibration[J]. The Journal of Physical Chemistry A,2009,113(33):9348-9353. doi: 10.1021/jp904602j
|
[49] |
WOLS B A, HOFMAN-CARIS C H M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water[J]. Water Research,2012,46(9):2815-2827. doi: 10.1016/j.watres.2012.03.036
|
[50] |
MORALES-ROQUE J, CARRILLO-CÁRDENAS M, JAYANTHI N, et al. Theoretical and experimental interpretations of phenol oxidation by the hydroxyl radical[J]. Journal of Molecular Structure:THEOCHEM,2009,910(1/2/3):74-79.
|
[51] |
SUN L, CHEN H, ABDULLA H A, et al. Estimating hydroxyl radical photochemical formation rates in natural waters during long-term laboratory irradiation experiments[J]. Environmental Science Processes & Impacts,2014,16(4):757-763.
|
[52] |
ÅGREN A, REICHARD P, BONNICHSEN R, et al. The complex formation between iron(Ⅲ) ion and some phenols. II: salicylic acid and p-amino salicylic acid[J]. Acta Chemica Scandinavica,1954,8:1059-1072.
|
[53] |
COOLEN S A J, HUF F A, REIJENGA J C. Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography[J]. Journal of Chromatography B:Biomedical Sciences and Applications,1998,717(1/2):119-124.
|
[54] |
WANG Q J, DING F, ZHU N N, et al. Determination of hydroxyl radical by capillary zone electrophoresis with amperometric detection[J]. Journal of Chromatography A,2003,1016(1):123-128. doi: 10.1016/S0021-9673(03)01294-9
|
[55] |
程宏英, 曹玉华.毛细管电泳-电化学检测法测定硫酸铜-维生素C反应体系中的羟基自由基和菊花的抗氧化活性[J]. 色谱,2007,25(5):681-685. doi: 10.3321/j.issn:1000-8713.2007.05.012
CHENG H Y, CAO Y H. Determination of hydroxyl radical in CuSO4-vitamin C reaction system and scavenging activities of Chrysanthemum using capillary electrophoresis with electrochemical detection[J]. Chinese Journal of Chromatography,2007,25(5):681-685. doi: 10.3321/j.issn:1000-8713.2007.05.012
|
[56] |
张卫东. 毛细管电泳—电化学检测在环境和药物分析中的应用研究[D]. 上海: 华东师范大学, 2007.
|
[57] |
赵淑锐, 杨源, 郑美青, 等.基于Fenton反应产生的羟自由基检测方法比较[J]. 实验技术与管理,2020,37(12):67-71.
ZHAO S R, YANG Y, ZHENG M Q, et al. Comparison of detection methods of hydroxyl radicals based on Fenton reaction[J]. Experimental Technology and Management,2020,37(12):67-71.
|
[58] |
FENG Y, WU D L, ZHOU Y, et al. A metal-free method of generating sulfate radicals through direct interaction of hydroxylamine and peroxymonosulfate: mechanisms, kinetics, and implications[J]. Chemical Engineering Journal,2017,330:906-913. doi: 10.1016/j.cej.2017.08.034
|
[59] |
CASHMAN M A, KIRSCHENBAUM L, HOLOWACHUK J, et al. Identification of hydroxyl and sulfate free radicals involved in the reaction of 1, 4-dioxane with peroxone activated persulfate oxidant[J]. Journal of Hazardous Materials,2019,380:120875. doi: 10.1016/j.jhazmat.2019.120875
|
[60] |
孙霞. 铜、铁对水体中阿特拉津光降解影响的研究[D]. 大连: 大连理工大学, 2010.
|
[61] |
ZHOU Y, WANG X L, ZHU C Y, et al. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation[J]. Water Research,2018,142:208-216. doi: 10.1016/j.watres.2018.06.002
|
[62] |
SUEISHI Y, MIYAZONO K, KOZAI K. Effects of substituent and external pressure on spin trapping rates of carbon dioxide anion, sulfur trioxide anion, hydroxyl, and ethyl radicals with various PBN- and DMPO-type spin traps[J]. Zeitschrift Für Physikalische Chemie,2014,228(9):927-938.
|
[63] |
JANZEN E G, WANG Y Y, SHETTY R V. ChemInform abstract: spin trapping with α-pyridyl 1-OXIDE n-tert-butyl nitrones in aqueous solutions. a unique electron spin resonance spectrum for the hydroxyl radical adduct[J]. Chemischer Informationsdienst,1978,9(33):2923-2935.
|
[64] |
HIDEG É, SPETEA C, VASS I. Singlet oxygen and free radical production during acceptor- and donor-side-induced photoinhibition: studies with spin trapping EPR spectroscopy[J]. Biochimica et Biophysica Acta (BBA) : Bioenergetics,1994,1186(3):143-152. doi: 10.1016/0005-2728(94)90173-2
|
[65] |
ZAMORA P L, VILLAMENA F A. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO): 3. sulfur dioxide, sulfite, and sulfate radical anions[J]. Journal of Physical Chemistry A,2012,116(26):7210-7218. doi: 10.1021/jp3039169
|
[66] |
VILLAMENA F A, LOCIGNO E J, ROCKENBAUER A, et al. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO): 2. carbonate radical anion[J]. Journal of Physical Chemistry A,2007,111(2):384-391. doi: 10.1021/jp065692d
|
[67] |
BONINI M G, RADI R, FERRER-SUETA G, et al. Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide[J]. Journal of Biological Chemistry,1999,274(16):10802-10806. doi: 10.1074/jbc.274.16.10802
|
[68] |
CARNEY J M, FLOYD R A. PBN, DMPO, and POBN compositions and method of use thereof for inhibition of age-associated oxidation: US5405874[P]. 1995-04-11.
|
[69] |
POU S, RAMOS C L, GLADWELL T, et al. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical[J]. Analytical Biochemistry,1994,217(1):76-83. doi: 10.1006/abio.1994.1085
|
[70] |
BURNS J M, COOPER W J, FERRY J L, et al. Methods for reactive oxygen species (ROS) detection in aqueous environments[J]. Aquatic Sciences,2012,74(4):683-734. doi: 10.1007/s00027-012-0251-x
|
[71] |
STOLZE K, UDILOVA N, ROSENAU T, et al. Spin adduct formation from lipophilic EMPO-derived spin traps with various oxygen- and carbon-centered radicals[J]. Biochemical Pharmacology,2005,69(2):297-305. doi: 10.1016/j.bcp.2004.09.021
|
[72] |
HIDEG É, SPETEA C, VASS I. Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy[J]. Photosynthesis Research,1994,39(2):191-199. doi: 10.1007/BF00029386
|
[73] |
KLAUSCHENZ E, HASELOFF R F, VOLODARSKII L B, et al. Spin trapping using 2, 2-dimethyl-2H-imidazole-1-oxides[J]. Free Radical Research,1994,20(2):103-111. doi: 10.3109/10715769409147507
|
[74] |
ROUBAUD V, LAURICELLA R, TUCCIO B, et al. Decay of superoxide spin adducts of new PBN-type phosphorylated nitrones[J]. Research on Chemical Intermediates,1996,22(4):405-416. doi: 10.1163/156856796X00098
|
[75] |
TUCCIO B, ZEGHDAOUI A, FINET J P, et al. Use of new β-phosphorylated nitrones for the spin trapping of free radicals[J]. Research on Chemical Intermediates,1996,22(4):393-404. doi: 10.1163/156856796X00089
|
[76] |
PODMORE I, CUNLIFFE L, HESHMATI M. Rapid detection of free radicals using spin trapping and MALDI-TOF mass spectrometry[J]. Journal of Chemical Research,2013,37(1):45-47. doi: 10.3184/174751912X13548917858338
|
[77] |
BARTALIS J, ZHAO Y L, FLORA J W, et al. Carbon-centered radicals in cigarette smoke: acyl and alkylaminocarbonyl radicals[J]. Analytical Chemistry,2009,81(2):631-641. doi: 10.1021/ac801969f
|
[78] |
REIS A, DOMINGUES M R M, OLIVEIRA M M, et al. Identification of free radicals by spin trapping with DEPMPO and MCPIO using tandem mass spectrometry[J]. European Journal of Mass Spectrometry (Chichester, England),2009,15(6):689-703. doi: 10.1255/ejms.1026
|
[79] |
GUO Q, QIAN S Y, MASON R P. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS[J]. Journal of the American Society for Mass Spectrometry,2003,14(8):862-871. doi: 10.1016/S1044-0305(03)00336-2
|
[80] |
SIMÕES C, DOMINGUES P, DOMINGUES M R M. Identification of free radicals in oxidized and glycoxidized phosphatidylethanolamines by spin trapping combined with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2012,26(8):931-939. doi: 10.1002/rcm.6186
|
[81] |
LU P N, KU D L, HUANG X W, et al. A sensitive method for the determination of ultra trace levels of reactive bromine species in water using LC-MS/MS[J]. Talanta,2019,199:567-572. doi: 10.1016/j.talanta.2019.03.020
|
[82] |
DOMINGUES M R M, DOMINGUES P, REIS A, et al. Identification of oxidation products and free radicals of tryptophan by mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2003,14(4):406-416. doi: 10.1016/S1044-0305(03)00127-2
|
[83] |
JURVA U, WIKSTRÖM H V, BRUINS A P. Electrochemically assisted Fenton reaction: reaction of hydroxyl radicals with xenobiotics followed by on-line analysis with high-performance liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2002,16(20):1934-1940. doi: 10.1002/rcm.808
|
[84] |
WANG Y, LIU M S, ZHU Y J, et al. Identifying the tobacco related free radicals by UPCC-QTOF-MS with radical trapping method in mainstream cigarette smoke[J]. Talanta,2016,160:106-112. doi: 10.1016/j.talanta.2016.07.002
|
[85] |
DOMINGUES P, DOMINGUES M R M, AMADO F M L, et al. Detection and characterization of hydroxyl radical adducts by mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2001,12(11):1214-1219. doi: 10.1016/S1044-0305(01)00310-5
|
[86] |
IMARAM W, GERSCH C, KIM K M, et al. Radicals in the reaction between peroxynitrite and uric acid identified by electron spin resonance spectroscopy and liquid chromatography mass spectrometry[J]. Free Radical Biology and Medicine,2010,49(2):275-281. doi: 10.1016/j.freeradbiomed.2010.04.010
|
[87] |
QI F, CHU W, XU B B. Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate[J]. Applied Catalysis B:Environmental,2013,134/135:324-332. doi: 10.1016/j.apcatb.2013.01.038
|
[88] |
YAO Y J, CHEN H, LIAN C, et al. Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. Journal of Hazardous Materials,2016,314:129-139. doi: 10.1016/j.jhazmat.2016.03.089
|
[89] |
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1988,17(2):513-886. doi: 10.1063/1.555805
|
[90] |
ZHOU Y, JIANG J, GAO Y, et al. Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process[J]. Environmental Science & Technology,2015,49(21):12941-12950.
|
[91] |
LIU Y, GUO H G, ZHANG Y L, et al. Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation[J]. Environmental Pollution,2019,252:1042-1050. doi: 10.1016/j.envpol.2019.05.157
|
[92] |
WANG J L, WANG S Z. Reactive species in advanced oxidation processes: formation, identification and reaction mechanism[J]. Chemical Engineering Journal,2020,401:126158. doi: 10.1016/j.cej.2020.126158
|
[93] |
MANZOOR K, MISHRA S K, PODMORE I D. Detection and identification of ethanal-derived spin-trapped free radicals using headspace thermal desorption gas chromatography-mass spectrometry (TD-GC-MS)[J]. Free Radical Research,2020,54(10):745-755. doi: 10.1080/10715762.2020.1841183
|
[94] |
MISTRY P, NAJIM N, PURDIE A, et al. Indirect detection of hydroxyl radicals using spin trapping and gas chromatography-mass spectrometry[J]. Journal of Chemical Research Synopses,2008(7):395-397. □
|