Volume 12 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
LI Z G,ZHANG H,XU G H.Research progress of numerical model of secondary sedimentation tank in sewage treatment plant[J].Journal of Environmental Engineering Technology,2022,12(5):1534-1540 doi: 10.12153/j.issn.1674-991X.20210369
Citation: LI Z G,ZHANG H,XU G H.Research progress of numerical model of secondary sedimentation tank in sewage treatment plant[J].Journal of Environmental Engineering Technology,2022,12(5):1534-1540 doi: 10.12153/j.issn.1674-991X.20210369

Research progress of numerical model of secondary sedimentation tank in sewage treatment plant

doi: 10.12153/j.issn.1674-991X.20210369
  • Received Date: 2021-08-02
  • Numerical model simulation has irreplaceable advantages in the design, operation, and optimization of the secondary sedimentation tank of the sewage treatment plant. It is very important to summarize existing numerical models for the selection and establishment of models in practical applications. The principles of multiphase models such as Euler-Lagrange model, Euler-Euler model, and Mixture model for numerical simulation of secondary sedimentation tank were introduced. The applicability of each model was described, the advantages and disadvantages of each model put forward, and the application principles of the single-phase model in sludge sedimentation explained. The single-phase model described the movement law of sludge sedimentation by coupling a single solid-phase transport equation, which was better than multiphase model in predicting the distribution of sludge mass concentration in the secondary sedimentation tank. The research status of the sludge sedimentation velocity model was discussed, including the model of intermittent sludge settlement using batch settlement test and the model of continuous flow sludge settlement describing the secondary sedimentation tank of the sewage treatment plant. The influence of sludge load, geometry structure, and temperature on water quality simulation of the secondary sedimentation tank was systematically reviewed. Finally, the selection of mathematical models for secondary sedimentation tank of the sewage treatment plant and future research on sedimentation models were prospected, to provide a theoretical basis and technical reference for the operation and design optimization of the secondary sedimentation tank of the sewage treatment plant.

     

  • loading
  • [1]
    GAO H W, STENSTROM M K. The influence of wind in secondary settling tanks for wastewater treatment: a computational fluid dynamics study: part I. circular secondary settling tanks[J]. Water Environment Research,2020,92(4):541-550. doi: 10.1002/wer.1241
    [2]
    GAO H W, STENSTROM M K. The influence of wind in secondary settling tanks for wastewater treatment: a computational fluid dynamics study: part II. rectangular secondary settling tanks[J]. Water Environment Research,2020,92(4):551-561. doi: 10.1002/wer.1244
    [3]
    刘朝晖. 四溴双酚A废水生化处理的工程研究及设计[D]. 天津: 天津大学, 2017.
    [4]
    NOPENS I, BATSTONE D J, GRIBORIO A, et al. Computational fluid dynamics (CFD): what is good CFD-modeling practice and what can be the added value of CFD models to WWTP modeling[J]. Proceedings of the Water Environment Federation,2012,2012(7):7400-7405. doi: 10.2175/193864712811704161
    [5]
    VESILIND P A. Design of prototype thickeners from batch settling tests[J]. Water Sewage Works,1968,115(7):302-307.
    [6]
    TAKÁCS I, PATRY G G, NOLASCO D. A dynamic model of the clarification-thickening process[J]. Water Research,1991,25(10):1263-1271. doi: 10.1016/0043-1354(91)90066-Y
    [7]
    WICKLEIN E A, SAMSTAG R W. Comparing commercial and transport CFD models for secondary sedimentation[J]. Proceedings of the Water Environment Federation,2009,2009(10):6066-6081. doi: 10.2175/193864709793952765
    [8]
    de CLERCQ B. Computational fluid dynamics of settling tanks: development of experiments and rheological, settling, and scraper submodels[D]. Belgium: Ghent University, 2003.
    [9]
    LIU X F, GARCÍA M H. Computational fluid dynamics modeling for the design of large primary settling tanks[J]. Journal of Hydraulic Engineering,2011,137(3):343-355. doi: 10.1061/(ASCE)HY.1943-7900.0000313
    [10]
    KARPINSKA A M, BRIDGEMAN J. CFD-aided modelling of activated sludge systems: a critical review[J]. Water Research,2016,88:861-879. doi: 10.1016/j.watres.2015.11.008
    [11]
    BURT D. Improved design of settling tanks using an extended drift flux model[R]. Bristol: University of Bristol. DOI: 10.13140/RG.2.1.5109.2082.
    [12]
    KYNCH G J. A theory of sedimentation[J]. Transactions of the Faraday Society,1952,48:166-176. doi: 10.1039/tf9524800166
    [13]
    XANTHOS S, RAMALINGAM K, LIPKE S, et al. Implementation of CFD modeling in the performance assessment and optimization of secondary clarifiers: the PVSC case study[J]. Water Science and Technology,2013,68(9):1901-1913. doi: 10.2166/wst.2013.280
    [14]
    XANTHOS S, GONG M W, RAMALINGAM K, et al. Performance assessment of secondary settling tanks using CFD modeling[J]. Water Resources Management,2011,25(4):1169-1182. doi: 10.1007/s11269-010-9620-1
    [15]
    VERMA S, PRASAD B, MISHRA I M. Pretreatment of petrochemical wastewater by coagulation and flocculation and the sludge characteristics[J]. Journal of Hazardous Materials,2010,178(1/2/3):1055-1064.
    [16]
    许春莲, 王文君, 胡学东, 等.缓释型除磷药剂在小型污水处理装置中的应用[J]. 环境工程技术学报,2013,3(6):527-531. doi: 10.3969/j.issn.1674-991X.2013.06.082

    XU C L, WANG W J, HU X D, et al. The application of sustained-release dephosphorization tablets to a small wastewater treatment plant[J]. Journal of Environmental Engineering Technology,2013,3(6):527-531. doi: 10.3969/j.issn.1674-991X.2013.06.082
    [17]
    BÜRGER R. Phenomenological foundation and mathematical theory of sedimentation-consolidation processes[J]. Chemical Engineering Journal,2000,80(1/2/3):177-188.
    [18]
    KINNEAR D J. Biological solids sedimentation: a model incorporating fundamental settling parameters[D]. Salt Lake City: University of Utah, 2002.
    [19]
    de CLERCQ J, NOPENS I, DEFRANCQ J, et al. Extending and calibrating a mechanistic hindered and compression settling model for activated sludge using in-depth batch experiments[J]. Water Research,2008,42(3):781-791. doi: 10.1016/j.watres.2007.08.040
    [20]
    PLÓSZ B G, WEISS M, PRINTEMPS C, et al. One-dimensional modelling of the secondary clarifier-factors affecting simulation in the clarification zone and the assessment of the thickening flow dependence[J]. Water Research,2007,41(15):3359-3371. doi: 10.1016/j.watres.2007.03.007
    [21]
    PLÓSZ B G, DE CLERCQ J, NOPENS I, et al. Shall we upgrade one-dimensional secondary settler models used in WWTP simulators: an assessment of model structure uncertainty and its propagation[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2011,63(8):1726-1738. doi: 10.2166/wst.2011.412
    [22]
    GUO L S, ZHANG D J, XU D Y, et al. An experimental study of low concentration sludge settling velocity under turbulent condition[J]. Water Research,2009,43(9):2383-2390. doi: 10.1016/j.watres.2009.02.032
    [23]
    ABUSAM A, KEESMAN K J. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks[J]. Water Environment Research,2009,81(1):51-56. doi: 10.1002/j.1554-7531.2009.tb00249.x
    [24]
    RENKO E K. Modelling hindered batch settling: part I. a model for linking zone setting velocity and stirred sludge volume index[J]. Water S A,1998,24(4):325-330.
    [25]
    DIEHL S, ZAMBRANO J, CARLSSON B. Steady-state analysis of activated sludge processes with a settler model including sludge compression[J]. Water Research,2016,88:104-116. doi: 10.1016/j.watres.2015.09.052
    [26]
    ZHANG Y K, YIN X F, HE Z J, et al. Modeling the activated sludge: thickening process in secondary settlers[J]. International Journal of Environmental Research and Public Health,2015,12(12):15449-15458. doi: 10.3390/ijerph121214996
    [27]
    ZHANG Y K, WANG H C, QI L, et al. Simple model of sludge thickening process in secondary settlers[J]. Frontiers of Environmental Science & Engineering,2016,10(2):319-326.
    [28]
    RAMIN E, WÁGNER D S, YDE L, et al. A new settling velocity model to describe secondary sedimentation[J]. Water Research,2014,66:447-458. doi: 10.1016/j.watres.2014.08.034
    [29]
    BAKIRI Z, NACEF S. Development of an improved model for settling velocity and evaluation of the settleability characteristics[J]. Water Environment Research,2020,92(7):1089-1098. doi: 10.1002/wer.1306
    [30]
    XU G H, YIN F J, XU Y J, et al. A force-based mechanistic model for describing activated sludge settling process[J]. Water Research,2017,127:118-126. doi: 10.1016/j.watres.2017.10.013
    [31]
    PL'OSZ B G, NOPENS I, RIEGER L, et al. A critical review of clarifier modelling: state-of-the-art and engineering practices[EB/OL]. [2021-07-10]. https://modeleau.fsg.ulaval.ca/fileadmin/modeleau/documents/Publications/pvr993.pdf.
    [32]
    PARKER D S. Assessment of secondary clarification design concepts[J]. Water Pollution Control Federation,1983:349-359.
    [33]
    PARKER D S, KINNEAR D J, WAHLBERG E J. Review of folklore in design and operation of secondary clarifiers[J]. Journal of Environmental Engineering,2001,127(6):476-484. doi: 10.1061/(ASCE)0733-9372(2001)127:6(476)
    [34]
    VESTNER R J, WOLFGANG GÜNTHERT F. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks: full-scale operational results[J]. Water Science and Technology,2004,50(7):179-186. doi: 10.2166/wst.2004.0450
    [35]
    GAO H W, STENSTROM M K. Computational fluid dynamics applied to secondary clarifier analysis[C]//World Environmental and Water Resources Congress 2017. Reston, VA, USA: American Society of Civil Engineers, 2017: 301-315.
    [36]
    GAO H W, STENSTROM M K. Evaluating the effects of inlet geometry on the limiting flux of secondary settling tanks with CFD model and 1D flux theory model[J]. Journal of Environmental Engineering,2019,145(10):04019065. doi: 10.1061/(ASCE)EE.1943-7870.0001582
    [37]
    VITASOVIC Z C, ZHOU S P, MCCORQUODALE J A, et al. Secondary clarifier analysis using data from the Clarifier Research Technical Committee protocol[J]. Water Environment Research,1997,69(5):999-1007. doi: 10.2175/106143097X125696
    [38]
    WAHLBERG E J, GERGES H Z, GHARAGOZIAN A, et al. Secondary clarifier analysis using data from the Clarifier Research Technical Committee protocol[J]. Water Environment Research,1998,70(2):249-253. doi: 10.2175/106143098X127107
    [39]
    PATZIGER M. Computational fluid dynamics investigation of shallow circular secondary settling tanks: inlet geometry and performance indicators[J]. Chemical Engineering Research and Design,2016,112:122-131. doi: 10.1016/j.cherd.2016.06.018
    [40]
    ROSTAMI F, SHAHROKHI M, MD SAID M A, et al. Numerical modeling on inlet aperture effects on flow pattern in primary settling tanks[J]. Applied Mathematical Modelling,2011,35(6):3012-3020. doi: 10.1016/j.apm.2010.12.007
    [41]
    BOUISFI F, BOUISFI A, OUARRICHE H, et al. Improving removal efficiency of sedimentation tanks using different inlet and outlet position[J]. FME Transactions,2019,47(4):894-900. doi: 10.5937/fmet1904894B
    [42]
    KREBS P, VISCHER D, GUJER W. Improvement of secondary clarifiers efficiency by porous walls[J]. Water Science and Technology,1992,26(5/6):1147-1156.
    [43]
    RAMALINGAM K, FILLOS J, XANTHOS S, et al. Development and validation of a 3-dimensional computational fluid dynamics (CFD) model for rectangular settling tanks in New York City water pollution control plants[J]. Water Practice and Technology, 2008, 4(1).
    [44]
    VAHIDIFAR S, SAFFARIAN M R, HAJIDAVALLOO E. Introducing the theory of successful settling in order to evaluate and optimize the sedimentation tanks[J]. Meccanica,2018,53(14):3477-3493. doi: 10.1007/s11012-018-0907-2
    [45]
    GERGES H, MCCORQUODALE A. Thirty years of sedimentation tanks modeling learning from experience[J]. Proceedings of the Water Environment Federation,2008,2008(15):1613-1619. doi: 10.2175/193864708788733729
    [46]
    赵东旭. 斜板沉淀池中固-液两相流水力特性数值模拟研究[D]. 西安: 西安理工大学, 2019.
    [47]
    WANG K Y, LI Y K, REN S M, et al. A case study on settling process in inclined-tube gravity sedimentation tank for drip irrigation with the Yellow River water[J]. Water,2020,12(6):1685. doi: 10.3390/w12061685
    [48]
    GOULA A M, KOSTOGLOU M, KARAPANTSIOS T D, et al. The effect of influent temperature variations in a sedimentation tank for potable water treatment: a computational fluid dynamics study[J]. Water Research,2008,42(13):3405-3414. doi: 10.1016/j.watres.2008.05.002
    [49]
    魏文礼, 蔡亚希, 刘玉玲.温差对辐流式沉淀池水力特性影响的数值模拟[J]. 武汉大学学报(工学版),2016,49(1):9-15. doi: 10.14188/j.1671-8844.2016-01-002

    WEI W L, CAI Y X, LIU Y L. Numerical simulation of influence of temperature difference on hydraulic characteristics in radial flow sedimentation tank[J]. Engineering Journal of Wuhan University,2016,49(1):9-15. doi: 10.14188/j.1671-8844.2016-01-002
    [50]
    刘经凯, 刘振鸿.温度异重流对竖流式二沉池影响的三维数值模拟[J]. 土木工程,2020,9(4):265-276. doi: 10.12677/HJCE.2020.94029

    LIU J K, LIU Z H. Three-dimensional numerical simulation of the influence of temperature density flow on vertical secondary sedimentation tank[J]. Hans Journal of Civil Engineering,2020,9(4):265-276. doi: 10.12677/HJCE.2020.94029
    [51]
    STAMOU A, GKESOULI A. Modeling settling tanks for water treatment using computational fluid dynamics[J]. Journal of Hydroinformatics,2015,17(5):745-762. doi: 10.2166/hydro.2015.069
    [52]
    GOODARZI D, LARI K S, ALIGHARDASHI A. A large eddy simulation study to assess low-speed wind and baffle orientation effects in a water treatment sedimentation basin[J]. Water Science and Technology,2018,2017(2):412-421. doi: 10.2166/wst.2018.171
    [53]
    GKESOULI A, STAMOU A. A CFD modeling procedure to assess the effect of wind in settling tanks[J]. Journal of Hydroinformatics,2019,21(1):123-135. ⊗ doi: 10.2166/hydro.2018.048
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article Views(553) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return