Citation: | CHENG Hu, ZHANG Jiapeng, SONG Yang, BIAN Yongrong, LI Wei, LI Taihua, ZHANG Meng, JIANG Xin, HAN Jiangang. The application of hydrochar in soil environment: study progress and prospects[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1202-1209. doi: 10.12153/j.issn.1674-991X.20210378 |
[1] |
孟军, 张伟明, 王绍斌, 等. 农林废弃物炭化还田技术的发展与前景[J]. 沈阳农业大学学报, 2011, 42(4):387-392.
MENG J, ZHANG W M, WANG S B, et al. Development and prospect of carbonization and returning technology of agro-forestry residue[J]. Journal of Shenyang Agricultural University, 2011, 42(4):387-392.
|
[2] |
KHAN N, MOHAN S, DINESHA P. Regimes of hydrochar yield from hydrothermal degradation of various lignocellulosic biomass:a review[J]. Journal of Cleaner Production, 2021, 288:125629.
doi: 10.1016/j.jclepro.2020.125629 |
[3] |
FANG J E, ZHAN L, OK Y S, et al. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass[J]. Journal of Industrial and Engineering Chemistry, 2018, 57:15-21.
doi: 10.1016/j.jiec.2017.08.026 |
[4] |
WANG T F, ZHAI Y B, ZHU Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation:process conditions,fundamentals,and physicochemical properties[J]. Renewable and Sustainable Energy Reviews, 2018, 90:223-247.
doi: 10.1016/j.rser.2018.03.071 |
[5] |
赵其国, 滕应, 黄国勤. 中国探索实行耕地轮作休耕制度试点问题的战略思考[J]. 生态环境学报, 2017, 26(1):1-5.
ZHAO Q G, TENG Y, HUANG G Q. Consideration about exploring pilot program of farmland rotation and fallow system in China[J]. Ecology and Environmental Sciences, 2017, 26(1):1-5.
|
[6] |
NZEDIEGWU C, NAETH M A, CHANG S X. Carbonization temperature and feedstock type interactively affect chemical,fuel,and surface properties of hydrochars[J]. Bioresource Technology, 2021, 330:124976.
doi: 10.1016/j.biortech.2021.124976 |
[7] |
WU L, WEI W, WANG D B, et al. Improving nutrients removal and energy recovery from wastes using hydrochar[J]. Science of the Total Environment, 2021, 783:146980.
doi: 10.1016/j.scitotenv.2021.146980 |
[8] |
SHARMA H B, SARMAH A K, DUBEY B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production:a discussion on process mechanism,the influence of process parameters,environmental performance and fuel properties of hydrochar[J]. Renewable and Sustainable Energy Reviews, 2020, 123:109761.
doi: 10.1016/j.rser.2020.109761 |
[9] |
LI L, WANG Y Y, XU J T, et al. Quantifying the sensitivity of feedstock properties and process conditions on hydrochar yield,carbon content,and energy content[J]. Bioresource Technology, 2018, 262:284-293.
doi: 10.1016/j.biortech.2018.04.066 |
[10] |
LENG L J, YANG L H, LENG S Q, et al. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen[J]. Science of the Total Environment, 2021, 756:143679.
doi: 10.1016/j.scitotenv.2020.143679 |
[11] |
WÜST D, CORREA C R, JUNG D, et al. Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar[J]. Biomass Conversion and Biorefinery, 2020, 10(4):1357-1380.
doi: 10.1007/s13399-019-00488-0 |
[12] |
CHENG H, BIAN Y R, WANG F, et al. Green conversion of crop residues into porous carbons and their application to efficiently remove polycyclic aromatic hydrocarbons from water:sorption kinetics,isotherms and mechanism[J]. Bioresource Technology, 2019, 284:1-8.
doi: 10.1016/j.biortech.2019.03.104 |
[13] |
CHENG H, SONG Y, WANG F, et al. Facile synjournal of hierarchical porous carbon from crude biomass for high-performance solid-phase microextraction[J]. Journal of Chromatography A, 2018, 1548:1-9.
doi: 10.1016/j.chroma.2018.03.019 |
[14] |
LIU T, CHEN Z S, LI Z X, et al. Preparation of magnetic hydrochar derived from iron-rich Phytolacca acinosa Roxb. for Cd removal[J]. Science of the Total Environment, 2021, 769:145159.
doi: 10.1016/j.scitotenv.2021.145159 |
[15] |
BARGMANN I, MARTENS R, RILLIG M C, et al. Hydrochar amendment promotes microbial immobilization of mineral nitrogen[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):59-67.
doi: 10.1002/jpln.201300154 |
[16] |
张曾, 宋成芳, 单胜道, 等. 猪粪水热炭对土壤有机碳矿化及土壤性质的影响[J]. 浙江农林大学学报, 2021, 38(4):765-773.
ZHANG Z, SONG C F, SHAN S D, et al. Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties[J]. Journal of Zhejiang A&F University, 2021, 38(4):765-773.
|
[17] |
ABEL S, PETERS A, TRINKS S, et al. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 2013, 202/203:183-191.
doi: 10.1016/j.geoderma.2013.03.003 |
[18] |
GASCÓ G, PAZ-FERREIRO J, ÁLVAREZ M L, et al. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure[J]. Waste Management, 2018, 79:395-403.
doi: 10.1016/j.wasman.2018.08.015 |
[19] |
MAU V, ARYE G, GROSS A. Poultry litter hydrochar as an amendment for sandy soils[J]. Journal of Environmental Management, 2020, 271:110959.
doi: 10.1016/j.jenvman.2020.110959 |
[20] |
RÖHRDANZ M, REBLING T, OHLERT J, et al. Hydrothermal carbonization of biomass from landscape management:influence of process parameters on soil properties of hydrochars[J]. Journal of Environmental Management, 2016, 173:72-78.
doi: 10.1016/j.jenvman.2016.03.006 |
[21] |
LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry,processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1):71-106.
|
[22] |
BARGMANN I, RILLIG M C, KRUSE A, et al. Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1):48-58.
doi: 10.1002/jpln.v177.1 |
[23] |
侯朋福, 薛利红, 冯彦房, 等. 废弃物基水热炭改良对水稻产量及氮素吸收的影响[J]. 环境科学, 2020, 41(12):5648-5655.
HOU P F, XUE L H, FENG Y F, et al. Effects of modified biowaste-based hydrochar on rice yield and nitrogen uptake[J]. Environmental Science, 2020, 41(12):5648-5655.
|
[24] |
THUILLE A, LAUFER J, HÖHL C, et al. Carbon quality affects the nitrogen partitioning between plants and soil microorganisms[J]. Soil Biology and Biochemistry, 2015, 81:266-274.
doi: 10.1016/j.soilbio.2014.11.024 |
[25] |
WATSON C, SCHLÖSSER C, VÖGERL J, et al. Hydrochar,digestate,and process water impacts on a soil’s microbial community,processes,and metal bioavailability[J]. Soil Science Society of America Journal, 2021, 85(3):717-731.
doi: 10.1002/saj2.v85.3 |
[26] |
JI R T, SU L H, CHENG H, et al. Insights into the potential release of dissolved organic matter from different agro-forest waste-derived hydrochars:a pilot study[J]. Journal of Cleaner Production, 2021, 319:128676.
doi: 10.1016/j.jclepro.2021.128676 |
[27] |
SUN K, HAN L F, YANG Y, et al. Application of hydrochar altered soil microbial community composition and the molecular structure of native soil organic carbon in a paddy soil[J]. Environmental Science & Technology, 2020, 54(5):2715-2725.
doi: 10.1021/acs.est.9b05864 |
[28] |
PAZ-FERREIRO J, ÁLVAREZ-CALVO M L, de FIGUEIREDO C C, et al. Effect of biochar and hydrochar on forms of aluminium in an acidic soil[J]. Applied Sciences, 2020, 10(21):7843.
doi: 10.3390/app10217843 |
[29] |
FAN G P, TONG F, ZHANG W G, et al. The effect of organic solvent washing on the structure of hydrochar-based dissolved organic matters and its potential environmental toxicity[J]. Environmental Science and Pollution Research, 2021, 28(21):26584-26594.
doi: 10.1007/s11356-021-12517-5 |
[30] |
HAO S L, ZHU X D, LIU Y C, et al. Production temperature effects on the structure of hydrochar-derived dissolved organic matter and associated toxicity[J]. Environmental Science & Technology, 2018, 52(13):7486-7495.
doi: 10.1021/acs.est.7b04983 |
[31] |
HITZL M, MENDEZ A, OWSIANIAK M, et al. Making hydrochar suitable for agricultural soil:a thermal treatment to remove organic phytotoxic compounds[J]. Journal of Environmental Chemical Engineering, 2018, 6(6):7029-7034.
doi: 10.1016/j.jece.2018.10.064 |
[32] |
DICKE C, LANZA G, MUMME J, et al. Effect of hydrothermally carbonized char application on trace gas emissions from two sandy soil horizons[J]. Journal of Environmental Quality, 2014, 43(5):1790-1798.
doi: 10.2134/jeq2013.12.0513 |
[33] |
KAMMANN C, RATERING S, ECKHARD C, et al. Biochar and hydrochar effects on greenhouse gas (carbon dioxide,nitrous oxide,and methane) fluxes from soils[J]. Journal of Environmental Quality, 2012, 41(4):1052-1066.
doi: 10.2134/jeq2011.0132 |
[34] |
MALGHANI S, JÜSCHKE E, BAUMERT J, et al. Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils:results of a 1-year field study[J]. Biology and Fertility of Soils, 2015, 51(1):123-134.
doi: 10.1007/s00374-014-0980-1 |
[35] |
SONG C F, SHAN S D, YANG C, et al. The comparison of dissolved organic matter in hydrochars and biochars from pig manure[J]. Science of the Total Environment, 2020, 720:137423.
doi: 10.1016/j.scitotenv.2020.137423 |
[36] |
ADJUIK T, RODJOM A M, MILLER K E, et al. Application of hydrochar,digestate,and synthetic fertilizer to a Miscanthus x giganteus crop:implications for biomass and greenhouse gas emissions[J]. Applied Sciences, 2020, 10(24):8953.
doi: 10.3390/app10248953 |
[37] |
CHENG H, JI R T, YAO S, et al. Potential release of dissolved organic matter from agricultural residue-derived hydrochar:insight from excitation emission matrix and parallel factor analysis[J]. Science of the Total Environment, 2021, 781:146712.
doi: 10.1016/j.scitotenv.2021.146712 |
[38] |
GAJIĆ A, RAMKE H G, HENDRICKS A, et al. Microcosm study on the decomposability of hydrochars in a Cambisol[J]. Biomass and Bioenergy, 2012, 47:250-259.
doi: 10.1016/j.biombioe.2012.09.036 |
[39] |
BENTO L R, SPACCINI R, CANGEMI S, et al. Hydrochar obtained with by-products from the sugarcane industry:molecular features and effects of extracts on maize seed germination[J]. Journal of Environmental Management, 2021, 281:111878.
doi: 10.1016/j.jenvman.2020.111878 |
[40] |
CELLETTI S, BERGAMO A, BENEDETTI V, et al. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate[J]. Journal of Environmental Management, 2021, 280:111635.
doi: 10.1016/j.jenvman.2020.111635 |
[41] |
GEORGE C, WAGNER M, KÜCKE M, et al. Divergent consequences of hydrochar in the plant-soil system:arbuscular mycorrhiza,nodulation,plant growth and soil aggregation effects[J]. Applied Soil Ecology, 2012, 59:68-72.
doi: 10.1016/j.apsoil.2012.02.021 |
[42] |
LARANJA M J, da SILVA R C J, BISINOTI M C, et al. Semivolatile organic compounds in the products from hydrothermal carbonisation of sugar cane bagasse and vinasse by gas chromatography-mass spectrometry[J]. Bioresource Technology Reports, 2020, 12:100594.
doi: 10.1016/j.biteb.2020.100594 |
[43] |
REX D, SCHIMMELPFENNIG S, JANSEN-WILLEMS A, et al. Microbial community shifts 2.6 years after top dressing of Miscanthus biochar,hydrochar and feedstock on a temperate grassland site[J]. Plant and Soil, 2015, 397(1/2):261-271.
doi: 10.1007/s11104-015-2618-y |
[44] |
ZHOU B B, FENG Y F, WANG Y M, et al. Impact of hydrochar on rice paddy CH4 and N2O emissions:a comparative study with pyrochar[J]. Chemosphere, 2018, 204:474-482.
doi: 10.1016/j.chemosphere.2018.04.056 |
[45] |
JI M Y, SANG W J, TSANG D C W, et al. Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil[J]. Science of the Total Environment, 2020, 714:136769.
doi: 10.1016/j.scitotenv.2020.136769 |
[46] |
TAKAYA C A, FLETCHER L A, SINGH S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016, 145:518-527.
doi: 10.1016/j.chemosphere.2015.11.052 |
[47] |
ANDERT J, MUMME J. Impact of pyrolysis and hydrothermal biochar on gas-emitting activity of soil microorganisms and bacterial and archaeal community composition[J]. Applied Soil Ecology, 2015, 96:225-239.
doi: 10.1016/j.apsoil.2015.08.019 |
[48] |
MALGHANI S, GLEIXNER G, TRUMBORE S E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions[J]. Soil Biology and Biochemistry, 2013, 62:137-146.
doi: 10.1016/j.soilbio.2013.03.013 |
[49] |
HOU P F, FENG Y F, WANG N, et al. Win-win:application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems[J]. Science of the Total Environment, 2020, 748:142457.
doi: 10.1016/j.scitotenv.2020.142457 |
[50] |
STOCKMANN U, ADAMS M A, CRAWFORD J W, et al. The knowns,known unknowns and unknowns of sequestration of soil organic carbon[J]. Agriculture,Ecosystems & Environment, 2013, 164:80-99.
doi: 10.1016/j.agee.2012.10.001 |
[51] |
XU X T, HE C, YUAN X, et al. Rice straw biochar mitigated more N2O emissions from fertilized paddy soil with higher water content than that derived from ex situ biowaste[J]. Environmental Pollution, 2020, 263:114477.
doi: 10.1016/j.envpol.2020.114477 |
[52] |
EL-NAGGAR A, EL-NAGGAR A H, SHAHEEN S M, et al. Biochar composition-dependent impacts on soil nutrient release,carbon mineralization,and potential environmental risk:a review[J]. Journal of Environmental Management, 2019, 241:458-467.
doi: S0301-4797(19)30195-1 pmid: 31027831 |
[53] |
GÄRDENÄS A I, ÅGREN G I, BIRD J A, et al. Knowledge gaps in soil carbon and nitrogen interactions:from molecular to global scale[J]. Soil Biology and Biochemistry, 2011, 43(4):702-717.
doi: 10.1016/j.soilbio.2010.04.006 |
[54] |
SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8:14873.
doi: 10.1038/ncomms14873 |
[55] |
LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota:a review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836.
doi: 10.1016/j.soilbio.2011.04.022 |
[56] |
CHEN D Y, ZHOU Y B, XU C, et al. Water-washed hydrochar in rice paddy soil reduces N2O and CH4 emissions:a whole growth period investigation[J]. Environmental Pollution, 2021, 274:116573.
doi: 10.1016/j.envpol.2021.116573 |
[57] |
HAN L F, RO K S, SUN K, et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants[J]. Environmental Science & Technology, 2016, 50(24):13274-13282.
doi: 10.1021/acs.est.6b02401 |
[58] |
LIU Z Y, WANG Z H, CHEN H X, et al. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas:a critical review[J]. Environmental Pollution, 2021, 268:115910.
doi: 10.1016/j.envpol.2020.115910 |
[59] |
张双杰, 邢宝林, 黄光许, 等. 核桃壳水热炭对六价铬的吸附特性[J]. 化工进展, 2016, 35(3):950-956.
ZHANG S J, XING B L, HUANG G X, et al. A study on adsorption of Cr(Ⅵ) by hydrothermal carbon from walnut shell[J]. Chemical Industry and Engineering Progress, 2016, 35(3):950-956.
|
[60] |
REN J, WANG F H, ZHAI Y B, et al. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil[J]. Chemosphere, 2017, 189:627-633.
doi: 10.1016/j.chemosphere.2017.09.102 |
[61] |
杨婷婷, 孟莉蓉, 吴继阳, 等. 水热炭对水土环境中重金属铅的固持[J]. 环境工程, 2017, 35(7):1-6,69.
YANG T T, MENG L R, WU J Y, et al. Immobilization of Pb in contaminated water and soil by hydrothermal carbon[J]. Environmental Engineering, 2017, 35(7):1-6,69.
|
[62] |
SATI M, VERMA M, RAI J P N. Biosorption of heavy metals from single and multimetal solutions by free and immobilized cells of Bacillus megaterium[J]. International Journal of Advanced Research, 2014, 2:923-934.
|
[63] |
CÁRDENAS-AGUIAR E, SUÁREZ G, PAZ-FERREIRO J, et al. Remediation of mining soils by combining Brassica napus growth and amendment with chars from manure waste[J]. Chemosphere, 2020, 261:127798.
doi: 10.1016/j.chemosphere.2020.127798 |
[64] |
CÁRDENAS-AGUIAR E, RUIZ B, FUENTE E, et al. Improving mining soil phytoremediation with Sinapis alba by addition of hydrochars and biochar from manure wastes[J]. Waste and Biomass Valorization, 2020, 11(10):5197-5210.
doi: 10.1007/s12649-020-00999-2 |
[65] |
EIBISCH N, SCHROLL R, FUß R. Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil[J]. Chemosphere, 2015, 134:528-535.
doi: 10.1016/j.chemosphere.2014.11.074 |
[66] |
ISAKOVSKI M K, MALETIĆ S, TAMINDŽIJA D, et al. Impact of hydrochar and biochar amendments on sorption and biodegradation of organophosphorus pesticides during transport through Danube alluvial sediment[J]. Journal of Environmental Management, 2020, 274:111156.
doi: 10.1016/j.jenvman.2020.111156 |
[67] |
SUN K, GAO B, RO K S, et al. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment[J]. Environmental Pollution, 2012, 163:167-173.
doi: 10.1016/j.envpol.2011.12.015 |
[68] |
TONG S Q, SHEN J Y, JIANG X B, et al. Recycle of Fenton sludge through one-step synjournal of aminated magnetic hydrochar for Pb2+ removal from wastewater[J]. Journal of Hazardous Materials, 2021, 406:124581.
doi: 10.1016/j.jhazmat.2020.124581 |
[69] |
ZHANG S, SHENG K C, YAN W, et al. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization[J]. Chemosphere, 2021, 263:128093.
doi: 10.1016/j.chemosphere.2020.128093 |
[70] |
ZHANG X Y, XIANG W, WANG B, et al. Adsorption of acetone and cyclohexane onto CO2 activated hydrochars[J]. Chemosphere, 2020, 245:125664.
doi: 10.1016/j.chemosphere.2019.125664 |
[71] |
XIA Y, LUO H N, LI D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar:performance,plant responses and immobilization mechanisms[J]. Environmental Pollution, 2020, 261:114217.
doi: 10.1016/j.envpol.2020.114217 |
[72] |
XIA Y, LIU H J, GUO Y C, et al. Immobilization of heavy metals in contaminated soils by modified hydrochar:efficiency,risk assessment and potential mechanisms[J]. Science of the Total Environment, 2019, 685:1201-1208.
doi: 10.1016/j.scitotenv.2019.06.288 |
[73] |
TENG F Y, ZHANG Y X, WANG D Q, et al. Iron-modified rice husk hydrochar and its immobilization effect for Pb and Sb in contaminated soil[J]. Journal of Hazardous Materials, 2020, 398:122977.
doi: 10.1016/j.jhazmat.2020.122977 |
[74] |
YUE Y, YAO Y, LIN Q M, et al. The change of heavy metals fractions during hydrochar decomposition in soils amended with different municipal sewage sludge hydrochars[J]. Journal of Soils and Sediments, 2017, 17(3):763-770.
doi: 10.1007/s11368-015-1312-2 |
[75] |
郑孟杰, 靳红梅, 张松贺, 等. 猪粪沼渣水热炭中重金属浸出特征研究[J]. 农业环境科学学报, 2018, 37(1):157-164.
ZHENG M J, JIN H M, ZHANG S H, et al. The leaching characteristics of heavy metals from hydrochars of digested swine manure[J]. Journal of Agro-Environment Science, 2018, 37(1):157-164.
|