Volume 12 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
ZHANG R H,CHEN Y D,WEI Z M,et al.Pollution characteristics and migration law of petroleum hydrocarbons in an industrial site in the intertidal zone of the river estuary[J].Journal of Environmental Engineering Technology,2022,12(5):1564-1571 doi: 10.12153/j.issn.1674-991X.20210449
Citation: ZHANG R H,CHEN Y D,WEI Z M,et al.Pollution characteristics and migration law of petroleum hydrocarbons in an industrial site in the intertidal zone of the river estuary[J].Journal of Environmental Engineering Technology,2022,12(5):1564-1571 doi: 10.12153/j.issn.1674-991X.20210449

Pollution characteristics and migration law of petroleum hydrocarbons in an industrial site in the intertidal zone of the river estuary

doi: 10.12153/j.issn.1674-991X.20210449
  • Received Date: 2021-08-23
  • Taking an industrial site in the intertidal zone of the river estuary as the research object, the total petroleum hydrocarbons (TPHs) of soil and groundwater samples were collected and investigated, and the migration law of TPHs in the soil and groundwater of the industrial site in the intertidal zone and the influence of tide on it were analyzed and discussed. The results showed that the groundwater level in the area along the river of the site fluctuated obviously by tide, the average permeability coefficient of the aquifer was 1.40 m/d, and the permeability of aquifer near the river was better. The maximum exceeding multiple of TPHs in the soil of the site was 1.39 times. The pollution was mainly distributed in the core production area, mainly neared the junction between the first two different lithological layers. The vertical distribution of TPHs in soil was significantly influenced by stratum structure and tidal effect. When the water level decreased, TPHs migrated downward and part of TPHs remained in vadose zone, while when the water level rose, it led to the opposite process. The maximum exceeding multiple of TPHs in the groundwater of the site was 95.23 times, the pollution plume center was consistent with the main areas of soil TPHs pollution, and the groundwater flow field had a significant impact on the migration and distribution of pollutants. The tidal effect expanded the range of TPH pollution plume. The fluctuation of groundwater level with no long-term stable flow direction made TPHs redistribute countless times between soil and groundwater, so that its migration law was not obvious. This study revealed to a certain extent that the long-term fluctuation of the intertidal groundwater level caused by the tidal effect had a significant impact on the migration law of pollutants in the soil and groundwater, which could provide a scientific guidance for the effective control and restoration of similar contaminated sites

     

  • loading
  • [1]
    孙明波, 何庆生, 刘献玲, 等.石油化工污染土壤回转窑式热解吸修复技术探讨[J]. 环境工程技术学报,2017,7(5):594-599.

    SUN M B, HE Q S, LIU X L, et al. Discussion on thermal desorption remediation technology with rotary kiln for petrochemical contaminated soil[J]. Journal of Environmental Engineering Technology,2017,7(5):594-599.
    [2]
    HEATH J S, KOBLIS K, SAGER S L. Review of chemical, physical, and toxicologic properties of components of total petroleum hydrocarbons[J]. Journal of Soil Contamination,1993,2(1):1-25.
    [3]
    张丹, 姜林, 夏天翔, 等.土壤-地下水系统中石油烃的迁移和生物降解述评[J]. 环境工程,2015,33(7):1-6.

    ZHANG D, JIANG L, XIA T X, et al. The migration and biodegradation of petroleum hydrocarbons in soils-groundwater system: a review[J]. Environmental Engineering,2015,33(7):1-6.
    [4]
    薛镇坤, 左锐, 王金生, 等.石油类污染物在非均质包气带中的迁移规律研究[J]. 环境科学研究,2020,33(4):1028-1036.

    XUE Z K, ZUO R, WANG J S, et al. Migration of petroleum in strong heterogeneous vadose zones[J]. Research of Environmental Sciences,2020,33(4):1028-1036.
    [5]
    GAO C, GUO X J, SHAO S, et al. Using MODFLOW/MT3DMS and electrical resistivity tomography to characterize organic pollutant migration in clay soil layer with a shallow water table[J]. Environmental Technology,2021,42(28):4490-4499. doi: 10.1080/09593330.2020.1767699
    [6]
    王玉蕊, 陈启华, 唐丽丽, 等.加油站地下水苯系物迁移模拟研究[J]. 天津科技,2017,44(3):81-85. doi: 10.3969/j.issn.1006-8945.2017.03.024

    WANG Y R, CHEN Q H, TANG L L, et al. Transfer of benzene series in groundwater around a gas station: a simulation sudy[J]. Tianjin Science & Technology,2017,44(3):81-85. doi: 10.3969/j.issn.1006-8945.2017.03.024
    [7]
    张宏凯, 左锐, 王金生, 等.加油站泄漏污染物的迁移分布规律[J]. 中国环境科学,2018,38(4):1532-1539. doi: 10.3969/j.issn.1000-6923.2018.04.041

    ZHANG H K, ZUO R, WANG J S, et al. The underground migration and distribution of petroleum contamination at a gas station[J]. China Environmental Science,2018,38(4):1532-1539. doi: 10.3969/j.issn.1000-6923.2018.04.041
    [8]
    TENG Y G, FENG D, SONG L T, et al. Total petroleum hydrocarbon distribution in soils and groundwater in Songyuan oilfield, Northeast China[J]. Environmental Monitoring and Assessment,2013,185(11):9559-9569. doi: 10.1007/s10661-013-3274-4
    [9]
    慕山, 许端平, 陈洪, 等.大庆贴不贴泡周边土壤及地下水石油烃污染规律[J]. 环境科学研究,2006,19(2):16-19. doi: 10.3321/j.issn:1001-6929.2006.02.007

    MU S, XU D P, CHEN H, et al. Contamination of petroleum hydrocarbons in soils and groundwater around tiebutie pool in Daqing[J]. Research of Environmental Sciences,2006,19(2):16-19. doi: 10.3321/j.issn:1001-6929.2006.02.007
    [10]
    HEISS J W, MICHAEL H A, PULEO J. Groundwater–surface water exchange in the intertidal zone detected by hydrologic and coastal oceanographic measurements[J]. Hydrological Processes,2020,34(17):3718-3721. doi: 10.1002/hyp.13825
    [11]
    李海龙, 万力, 焦赳赳.海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展,2011,26(7):685-694.

    LI H L, WAN L, JIAO J J. Hot issues in the study of coastal hydrogeology[J]. Advances in Earth Science,2011,26(7):685-694.
    [12]
    阳玲. 在滨海区含水层系统中地下水对潮汐的响应[D]. 天津: 天津师范大学, 2020.
    [13]
    刘艳. 海潮引起的滨海地区地下水位波动的研究[D]. 北京: 中国地质大学(北京), 2016.
    [14]
    王礼恒, 李国敏, 董艳辉, 等.利用观测孔中地下水位潮汐效应计算天津滨海新区含水层参数[J]. 水文地质工程地质,2012,39(4):7-11,37.

    WANG L H, LI G M, DONG Y H, et al. Estimation of shallow aquifer parameters using groundwater level tidal fluctuations at two boreholes in a coastal aquifer[J]. Hydrogeology & Engineering Geology,2012,39(4):7-11,37.
    [15]
    ZHOU X. Determination of aquifer parameters based on measurements of tidal effects on a coastal aquifer near Beihai, China[J]. Hydrological Processes,2008,22(16):3176-3180. doi: 10.1002/hyp.6906
    [16]
    WU M L, LI W, DICK W A, et al. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination[J]. Chemosphere,2017,169:124-130. doi: 10.1016/j.chemosphere.2016.11.059
    [17]
    生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国标准出版社, 2018.
    [18]
    王兵, 李珍珍, 李琋, 等.页岩气井场土壤石油类污染特性及对理化性质的影响[J]. 安全与环境学报,2018,18(4):1598-1604.

    WANG B, LI Z Z, LI X, et al. On the contamination features and their relationship with the physicochemical properties of petroleum hydrocarbon polluted soils in the shalegas fields[J]. Journal of Safety and Environment,2018,18(4):1598-1604.
    [19]
    ZHANG Q, WANG G C, SUGIURA N, et al. Distribution of petroleum hydrocarbons in soils and the underlying unsaturated subsurface at an abandoned petrochemical site, North China[J]. Hydrological Processes,2014,28(4):2185-2191. doi: 10.1002/hyp.9770
    [20]
    陈捷. 石油烃组分在土壤和地下水环境中的分布规律与迁移特征研究[D]. 广州: 华南理工大学, 2018.
    [21]
    林广宇. 地下水位变动带石油烃污染物的迁移转化规律研究[D]. 长春: 吉林大学, 2014.
    [22]
    LAMICHHANE S, BAL KRISHNA K C, SARUKKALIGE R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review[J]. Chemosphere,2016,148:336-353. doi: 10.1016/j.chemosphere.2016.01.036
    [23]
    郑昭贤, 苏小四, 王威.东北某油田污染场地土壤总石油烃背景值的确定及污染特征[J]. 水文地质工程地质,2011,38(6):118-124.

    ZHENG Z X, SU X S, WANG W. Estimation of the background(threshold) total petroleum hydrocarbon concentration and analysis of the characteristics of petroleum hydrocarbon contamination in a certain oilfield in Northeast China[J]. Hydrogeology & Engineering Geology,2011,38(6):118-124.
    [24]
    苏丽娜, 马晓利, 陈平.含油污水灌区土壤污染特征研究[J]. 土壤通报,2018,49(2):478-485. doi: 10.19336/j.cnki.trtb.2018.02.31

    SU L N, MA X L, CHEN P. Soil properties and pollution status in oily sewage irrigation area[J]. Chinese Journal of Soil Science,2018,49(2):478-485. doi: 10.19336/j.cnki.trtb.2018.02.31
    [25]
    常颖. 沿海石化行业典型地下水污染数值模拟研究[D]. 大连: 大连理工大学, 2014.
    [26]
    张倩. 典型石油污染场地有机污染物分布特征及其影响因素分析[D]. 北京: 中国地质大学(北京), 2009.
    [27]
    上海市生态环境局.上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)[S].上海,上海市生态环境局, 2020.
    [28]
    王超月. 潮汐和海浪引起的海岸带含水层地下水动态研究[D]. 北京: 中国地质大学(北京), 2016.
    [29]
    杨明星, 杨悦锁, 杜新强, 等.石油污染地下水有机污染组分特征及其环境指示效应[J]. 中国环境科学,2013,33(6):1025-1032. doi: 10.3969/j.issn.1000-6923.2013.06.010

    YANG M X, YANG Y S, DU X Q, et al. Organic fractions and their environmental implications of petroleum contaminated groundwater[J]. China Environmental Science,2013,33(6):1025-1032. doi: 10.3969/j.issn.1000-6923.2013.06.010
    [30]
    徐瑞阳, 洪梅.地下水水位波动对石油污染物迁移及透镜体位置的影响[J]. 环境工程,2020,38(12):168-172.

    XU R Y, HONG M. Effect of water-table fluctuation on petroleum pollutant migration and lens position[J]. Environmental Engineering,2020,38(12):168-172.
    [31]
    刘月峤, 丁爱中, 刘宝蕴, 等.地下水位波动带中石油烃污染迁移转化规律综述[J]. 科学技术与工程,2018,18(24):172-178. doi: 10.3969/j.issn.1671-1815.2018.24.025

    LIU Y Q, DING A Z, LIU B Y, et al. A review of the petroleum hydrocarbon contamination transformation performance in the zone of intermittent saturation[J]. Science Technology and Engineering,2018,18(24):172-178. ⊕ doi: 10.3969/j.issn.1671-1815.2018.24.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article Views(342) PDF Downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return