Volume 12 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
LIU F P,SUN N,HU H X,et al.AHP-TOPSIS-based technology comparison for remediation of iron and manganese contaminated groundwater for operating enterprises[J].Journal of Environmental Engineering Technology,2022,12(5):1572-1579 doi: 10.12153/j.issn.1674-991X.20210494
Citation: LIU F P,SUN N,HU H X,et al.AHP-TOPSIS-based technology comparison for remediation of iron and manganese contaminated groundwater for operating enterprises[J].Journal of Environmental Engineering Technology,2022,12(5):1572-1579 doi: 10.12153/j.issn.1674-991X.20210494

AHP-TOPSIS-based technology comparison for remediation of iron and manganese contaminated groundwater for operating enterprises

doi: 10.12153/j.issn.1674-991X.20210494
  • Received Date: 2021-09-07
  • Screening scientific and reasonable groundwater remediation technologies for operating enterprises is of great significance for effectively remediating contaminated groundwater bodies, saving corporate environmental investment, and achieving green and sustainable development. For the groundwater contaminated by iron and manganese of an operating enterprise, four technical schemes were put forward: extraction treatment, in-situ chemical oxidation, permeable reactive barrier, and monitoring natural attenuation, and the analytic hierarchy process (AHP) method and the technique for order preference by similarity to an ideal solution (TOPSIS) were used to select the best remediation scheme. 14 indicators in technical, economic, environmental and social terms were selected to establish the AHP model. The indicator weights were first determined by AHP, and then the four remediation schemes were ranked by TOPSIS in order of merit. The results showed that the technical scheme of monitoring natural attenuation was most suitable for groundwater treatment and remediation of the operating enterprise, due to its advantages in resource and energy consumption, waste generation and discharge, and pre-construction investment.

     

  • loading
  • [1]
    生态环境部.2019年全国生态环境质量简况[J]. 环境保护,2020,48(10):8-10.
    [2]
    生态环境部. 2020年中国生态环境状况公报[A/OL]. [2021-05-26].https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/.
    [3]
    李翔, 李妍颖, 李绍康, 等.地下水潜在污染源危害性评价方法研究[J]. 环境科学研究,2020,33(6):1328-1336.

    LI X, LI Y Y, LI S K, et al. Risk assessment of potential pollution sources of groundwater[J]. Research of Environmental Sciences,2020,33(6):1328-1336.
    [4]
    崔海.受高浓度铁锰氨氮污染的地下水治理研究[J]. 应用能源技术,2016(1):1-3. doi: 10.3969/j.issn.1009-3230.2016.01.001

    CUI H. The research on management of high concentration of Fe- Mn and NH3-N in the underground water[J]. Applied Energy Technology,2016(1):1-3. doi: 10.3969/j.issn.1009-3230.2016.01.001
    [5]
    李玮, 王明玉, 韩占涛, 等.棕地地下水污染修复技术筛选方法研究: 以某废弃化工厂污染场地为例[J]. 水文地质工程地质,2016,43(3):131-140.

    LI W, WANG M Y, HAN Z T, et al. Screening process of brownfield site groundwater remedial technologies: a case study of an abandoned chemical factory contaminated site[J]. Hydrogeology & Engineering Geology,2016,43(3):131-140.
    [6]
    吴鹏宇, 纪丹凤, 苏婧, 等.渗透性反应墙技术修复地下水硝酸盐污染的研究进展[J]. 环境工程技术学报,2016,6(3):245-251. doi: 10.3969/j.issn.1674-991X.2016.03.007

    WU P Y, JI D F, SU J, et al. Research progress of permeable reactive barrier in the remediation of nitrate pollution in groundwater[J]. Journal of Environmental Engineering Technology,2016,6(3):245-251. doi: 10.3969/j.issn.1674-991X.2016.03.007
    [7]
    宋易南, 侯德义, 赵勇胜, 等.京津冀化工场地地下水污染修复治理对策研究[J]. 环境科学研究,2020,33(6):1345-1356.

    SONG Y N, HOU D Y, ZHAO Y S, et al. Remediation strategies for contaminated groundwater at chemical industrial sites in the Beijing-Tianjin-Hebei region[J]. Research of Environmental Sciences,2020,33(6):1345-1356.
    [8]
    史哲齐, 李继繁, 王悦, 等.基于TOPSIS-AHP法的石化企业环境风险筛选研究[J]. 南开大学学报(自然科学版),2020,53(1):17-25.

    SHI Z Q, LI J F, WANG Y, et al. Study on environmental risk screening of petrochemical enterprises based on TOPSIS-AHP[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2020,53(1):17-25.
    [9]
    张婧, 皮鎏, 崔佳鑫, 等.垃圾填埋场区域氨氮污染地下水的修复方案比选[J]. 环境保护科学,2017,43(3):125-131.

    ZHANG J, PI L, CUI J X, et al. Comparison and selection of the remedial schemes for ammonia nitrogen-contaminated groundwater in landfill sites[J]. Environmental Protection Science,2017,43(3):125-131.
    [10]
    赵国存, 刘占岭.基于AHP-TOPSIS的装备保障信息定量评价研究[J]. 装备环境工程,2012,9(4):118-122. doi: 10.3969/j.issn.1672-9242.2012.04.030

    ZHAO G C, LIU Z L. Quantitative evaluation of equipment support information based on AHP-TOPSIS[J]. Equipment Environmental Engineering,2012,9(4):118-122. doi: 10.3969/j.issn.1672-9242.2012.04.030
    [11]
    李娜, 李小东, 唐东芳.基于AHP-TOPSIS的可持续包装设计最优方案的筛选[J]. 包装工程,2020,41(23):242-248.

    LI N, LI X D, TANG D F. Selection of the best sustainable packaging design scheme based on AHP-TOPSIS[J]. Packaging Engineering,2020,41(23):242-248.
    [12]
    张晓媛, 谭欣林. AHP-TOPSIS法在我国农村污水收集模式优选中的应用[J]. 给水排水, 2020, 56(增刊1): 966-972.

    ZHANG X Y, TAN X L. Rural sewage collection mode selection in China using the AHP-TOPSIS approach[J]. Water & Wastewater Engineering, 2020, 56(Suppl 1): 966-972.
    [13]
    李嵘, 刘志钢, 潘寒川, 等.基于AHP-TOPSIS的城市轨道交通应急演练评估研究[J]. 铁道运输与经济,2020,42(1):110-115.

    LI R, LIU Z G, PAN H C, et al. A study on the evaluation of emergency drill for urban rail transit based on AHP-TOPSIS model[J]. Railway Transport and Economy,2020,42(1):110-115.
    [14]
    罗一墩, 周怡岑, 陈政.基于AHP-TOPSIS-POE组合模型的生态茶园景观质量评价[J]. 经济地理,2020,40(12):183-190.

    LUO Y D, ZHOU Y C, CHEN Z. Landscape quality evaluation of ecological tea garden based on AHP-TOPSIS-POE combined model[J]. Economic Geography,2020,40(12):183-190.
    [15]
    WANG B, XIE H L, REN H Y, et al. Application of AHP, TOPSIS, and TFNs to plant selection for phytoremediation of petroleum-contaminated soils in shale gas and oil fields[J]. Journal of Cleaner Production,2019,233:13-22. doi: 10.1016/j.jclepro.2019.05.301
    [16]
    AN D, XI B D, REN J Z, et al. Sustainability assessment of groundwater remediation technologies based on multi-criteria decision making method[J]. Resources, Conservation and Recycling,2017,119:36-46. doi: 10.1016/j.resconrec.2016.08.002
    [17]
    生态环境部. 工业企业场地环境调查评估与修复工作指南[S/OL]. (2014-12-01)[2021-06-20].https://www.mee.gov.cn/gkml/hbb/bgg/201412/t20141211_292830.htm.
    [18]
    US EPA. Superfund remedy report: 542-R-13-016[R]. 14th ed. Washington DC: US EPA, 2013.
    [19]
    污染场地修复技术目录[R]. 北京: 环境保护部, 2014.
    [20]
    谷庆宝, 郭观林, 周友亚, 等.污染场地修复技术的分类、应用与筛选方法探讨[J]. 环境科学研究,2008,21(2):197-202.

    GU Q B, GUO G L, ZHOU Y Y, et al. Classification, application and selection of contaminated site remediation technology: an overview[J]. Research of Environmental Sciences,2008,21(2):197-202.
    [21]
    生态环境部. 地下水环境监测技术规范: HJ 164—2020[S]. 北京: 中国环境出版集团, 2020.
    [22]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S/OL]. [2021-06-10]. http://www.youth.gov.cn/cms/html/files/2014-05/26/20140526110832935497202.pdf.
    [23]
    张伯强, 席北斗, 高柏, 等.基于层次分析法的模糊综合评判在危险废物填埋场场址比选中的应用[J]. 环境工程技术学报,2016,6(3):275-283. doi: 10.3969/j.issn.1674-991X.2016.03.011

    ZHANG B Q, XI B D, GAO B, et al. An optimization methodology for hazardous waste landfill sites based on analytic hierarchy process and fuzzy evaluation[J]. Journal of Environmental Engineering Technology,2016,6(3):275-283. doi: 10.3969/j.issn.1674-991X.2016.03.011
    [24]
    周文武, 陈冠益, 旦增, 等.垃圾填埋场区域地下水铅的修复方案比选: 以拉萨市为例[J]. 环境工程,2020,38(6):88-93.

    ZHOU W W, CHEN G Y, DAN Z, et al. Comparison and selection of rehabilitation schemes for groundwater lead in landfill area: a case study of Lhasa[J]. Environmental Engineering,2020,38(6):88-93. ⊗
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article Views(260) PDF Downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return