Citation: | BU M Y,FEI B,ZHANG G F.Research on the evaluation system of VOCs leak detection and repair effect based on fuzzy analytic hierarchy process[J].Journal of Environmental Engineering Technology,2023,13(1):135-142 doi: 10.12153/j.issn.1674-991X.20210525 |
Based on the fuzzy analytic hierarchy process (FAHP), 14 evaluation indicators in four levels, including project establishment, on-site inspection, leak repair and retesting, and account management, were selected from the existing LDAR-related standards and technical guidelines in China, and a hierarchical structure model for LDAR implementation effect evaluation was constructed. By distributing more than 30 questionnaires to representatives of 3 types of groups: experts, enterprises, and third-party service providers, and then calculating the index weights, in order to solve the problem of how to scientifically assess the quality of LDAR implementation under the situation that the country pays more attention to the control of volatile organic compounds (VOCs).The results showed that the primary indicators in the assessment of LDAR implementation effectiveness were leak repair and retesting (0.305), project establishment (0.281), site inspection (0.245) and account management (0.169), and the 14 secondary indicators were ranked with the highest weight of leak repair timeliness and the lowest weight of compliance with exemption from inspection. The study established a systematic LDAR implementation effect assessment system based on the weight values and applied it to 10 enterprises in pharmaceutical, plastic products, synthetic resin and coating ink manufacturing, and concluded that the overall implementation effect of the pharmaceutical industry is preferred, the synthetic resin and coating ink industries have comparable implementation levels, and the compliance of plastic products enterprises in implementing LDAR work is slightly lower.
[1] |
马超, 薛志钢, 李树文, 等.VOCs排放、污染以及控制对策[J]. 环境工程技术学报,2012,2(2):103-109. doi: 10.3969/j.issn.1674-991X.2012.02.016
MA C, XUE Z G, LI S W, et al. VOCs emission, pollution and control measures[J]. Journal of Environmental Engineering Technology,2012,2(2):103-109. doi: 10.3969/j.issn.1674-991X.2012.02.016
|
[2] |
MA Z Q, XU J, QUAN W J, et al. Significant increase of surface ozone at a rural site, north of Eastern China[J]. Atmospheric Chemistry and Physics,2016,16(6):3969-3977. doi: 10.5194/acp-16-3969-2016
|
[3] |
XUE L K, WANG T, GAO J, et al. Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes[J]. Atmospheric Chemistry and Physics Discussions,2013,13(10):27243-27285.
|
[4] |
LI L Y, XIE S D, ZENG L M, et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei Region, China[J]. Atmospheric Environment,2015,113:247-254. doi: 10.1016/j.atmosenv.2015.05.021
|
[5] |
LIU C T, MA Z B, MU Y J, et al. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China[J]. Atmospheric Chemistry and Physics,2017,17(17):10633-10649. doi: 10.5194/acp-17-10633-2017
|
[6] |
国务院关于印发打赢蓝天保卫战三年行动计划的通知[A/OL].(2018-07-04) [2021-07-20]. https://www.mee.gov.cn/ywgz/fgbz/gz/201807/t20180705_446146.shtml.
|
[7] |
ZHANG G F, FEI B, XIU G L. Characteristics of volatile organic compound leaks from equipment components: a study of the pharmaceutical industry in China[J]. Sustainability,2021,13(11):6274. doi: 10.3390/su13116274
|
[8] |
张钢锋.泄漏检测与修复(LDAR)技术在国内外的应用现状及发展趋势[J]. 环境工程学报,2016,10(9):4621-4627. doi: 10.12030/j.cjee.201512200
ZHANG G F. Application and development trend of leak detection and repair (LDAR) [J]. Chinese Journal of Environmental Engineering,2016,10(9):4621-4627. doi: 10.12030/j.cjee.201512200
|
[9] |
US Environmental Protection Agency. Control of volatile organic compound leaks from petroleum refinery equipment[EB/OL]. [2021-07-15]. https://www.epa.gov/.
|
[10] |
US Environmental Protection Agency. Consent decrees and settlement agreements[EB/OL]. [2021-07-15].https://www.epa.gov/ogc/consent-decrees-and-settlement-agreements
|
[11] |
EPPERSON D, LEV-ON M, TABACK H, et al. Equivalent leak definitions for smart LDAR (leak detection and repair) when using optical imaging technology[J]. Journal of the Air & Waste Management Association,2007,57(9):1050-1060.
|
[12] |
王永敏, 王文秀, 马寅平, 等.重点行业泄漏检测与修复建档工作评估[J]. 广州化工,2019,47(2):157-160. doi: 10.3969/j.issn.1001-9677.2019.02.059
WANG Y M, WANG W X, MA Y P, et al. Assessment of component coding work on leak detection and repair of key industries[J]. Guangzhou Chemical Industry,2019,47(2):157-160. doi: 10.3969/j.issn.1001-9677.2019.02.059
|
[13] |
刘志阳, 廖程浩, 张晖, 等.泄漏检测与修复(LDAR)工作流程及常见问题剖析[J]. 绿色科技,2017(14):135-137.
|
[14] |
KE J, LI S, ZHAO D F. The application of leak detection and repair program in VOCs control in China's petroleum refineries[J]. Journal of the Air & Waste Management Association,2020,70(9):862-875.
|
[15] |
李龙, 李凌波, 程梦婷.石化行业泄漏检测与修复质量提升计划: LDAR质量审计审核[J]. 当代化工,2017,46(10):2090-2093. doi: 10.3969/j.issn.1671-0460.2017.10.036
LI L, LI L B, CHENG M T. Quality enhancement program of leak detection and repair in petrochemical enterprise: LDAR audits[J]. Contemporary Chemical Industry,2017,46(10):2090-2093. doi: 10.3969/j.issn.1671-0460.2017.10.036
|
[16] |
彭茵, 吉晟, 赵子玮, 等.泄漏检测与修复技术管理体系研究及评估建议[J]. 现代化工,2017,37(10):10-14.
PENG Y, JI S, ZHAO Z W, et al. Research and evaluation recommendation on management system of leak detection and repair technology[J]. Modern Chemical Industry,2017,37(10):10-14.
|
[17] |
XU R N, ZHAI X Y. Extensions of the analytic hierarchy process in fuzzy environment[J]. Fuzzy Sets and Systems,1992,52(3):251-257. doi: 10.1016/0165-0114(92)90236-W
|
[18] |
MIKHAILOV L, TSVETINOV P. Evaluation of services using a fuzzy analytic hierarchy process[J]. Applied Soft Computing,2004,5(1):23-33. doi: 10.1016/j.asoc.2004.04.001
|
[19] |
DUBOIS D, PRADE H. Operations on fuzzy numbers[J]. International Journal of Systems Science,1978,9(6):613-626. doi: 10.1080/00207727808941724
|
[20] |
CHEN J J G, HE Z S. Using analytic hierarchy process and fuzzy set theory to rate and rank the disability[J]. Fuzzy Sets and Systems,1997,88(1):1-22. doi: 10.1016/S0165-0114(96)00037-1
|
[21] |
段军, 梁智广, 岳洪辉.基于模糊层次分析法的采矿方法优选[J]. 化工矿物与加工,2017,46(12):53-56.
DUAN J, LIANG Z G, YUE H H. Optimization of mining method based on fuzzy analytic hierarchy process[J]. Industrial Minerals & Processing,2017,46(12):53-56.
|
[22] |
宋高峰, 潘卫东, 杨敬虎, 等.基于模糊层次分析法的厚煤层采煤方法选择研究[J]. 采矿与安全工程学报,2015,32(1):35-41.
SONG G F, PAN W D, YANG J H, et al. Mining methods selection in thick coal seam based on fuzzy analytic hierarchy process[J]. Journal of Mining & Safety Engineering,2015,32(1):35-41.
|
[23] |
李欢, 王涌川.基于模糊层次分析法的页岩气钻井井喷事故风险评价[J]. 安全与环境工程,2018,25(2):126-130.
LI H, WANG Y C. Risk assessment of shale gas drilling blowout accidents based on fuzzy analytic hierarchy process[J]. Safety and Environmental Engineering,2018,25(2):126-130.
|
[24] |
贾海林, 余明高, 崔志恒.基于模糊层次分析法的高校实验室火灾危险性评价[J]. 实验室研究与探索,2010,29(2):173-176. doi: 10.3969/j.issn.1006-7167.2010.02.056
JIA H L, YU M G, CUI Z H. Research on fire hazard evaluation of academy laboratory based on fuzzy analytical hierarchy process[J]. Research and Exploration in Laboratory,2010,29(2):173-176. doi: 10.3969/j.issn.1006-7167.2010.02.056
|
[25] |
马双忱, 范紫瑄, 温佳琪, 等.基于模糊层次分析的燃煤电厂脱硫废水处理可利用技术评价[J]. 化工进展,2018,37(11):4451-4459.
MA S C, FAN Z X, WEN J Q, et al. Evaluation on technology of desulfurization wastewater from coal-fired power plant based on fuzzy AHP[J]. Chemical Industry and Engineering Progress,2018,37(11):4451-4459.
|
[26] |
吴春生, 黄翀, 刘高焕, 等.基于模糊层次分析法的黄河三角洲生态脆弱性评价[J]. 生态学报,2018,38(13):4584-4595.
WU C S, HUANG C, LIU G H, et al. Assessment of ecological vulnerability in the Yellow River Delta using the fuzzy analytic hierarchy process[J]. Acta Ecologica Sinica,2018,38(13):4584-4595.
|
[27] |
黄书君, 李坤权, 朱光怡.基于模糊层次分析模型的高校室内空气质量评价与分析[J]. 环境工程,2014,32(5):90-94.
HUANG S J, LI K Q, ZHU G Y. Evaluation and analysis on the indoor air quality of colleges based on fuzzy analytic hierarchy process[J]. Environmental Engineering,2014,32(5):90-94.
|
[28] |
BUCKLEY J J. Fuzzy hierarchical analysis[J]. Fuzzy Sets and Systems,1985,17(3):233-247. doi: 10.1016/0165-0114(85)90090-9
|
[29] |
丁德武, 杜德川, 贾润中, 等.泄漏检测与修复技术实施水平量化评估简介[J]. 安全、健康和环境,2017,17(9):34-37. doi: 10.3969/j.issn.1672-7932.2017.09.009
DING D W, DU D C, JIA R Z, et al. Research on quantitative evaluation of implementation level of LDAR technology[J]. Safety Health & Environment,2017,17(9):34-37. doi: 10.3969/j.issn.1672-7932.2017.09.009
|
[30] |
郑幸成, 王文秀, 黄浩云, 等.石化行业泄漏检测与修复评估指标体系的建立与应用[J]. 化工环保,2018,38(3):363-368. doi: 10.3969/j.issn.1006-1878.2018.03.021
ZHENG X C, WANG W X, HUANG H Y, et al. Construction and application of evaluation index system for leak detection and repair in petrochemical industry[J]. Environmental Protection of Chemical Industry,2018,38(3):363-368. doi: 10.3969/j.issn.1006-1878.2018.03.021
|
[31] |
上海市市场监督管理局, 江苏省市场监督管理局, 浙江省市场监督管理局, 等. 设备泄漏挥发性有机物排放控制技术规范: DB3l/T 310007—2021, DB32/T 310007—2021, DB33/T 310007—2021, DB34/T 310007—2021[S]. 北京: 中国标准出版社, 2021.
|