Citation: | LI X B,LI H,YANG B P,et al.Hydrochemical characteristics and formation mechanism of water source area in Jiuxian County, Tai’an City[J].Journal of Environmental Engineering Technology,2022,12(6):2002-2010 doi: 10.12153/j.issn.1674-991X.20210593 |
The groundwater in the northern region of China is an important source for water supplement. In recent years, with the acceleration of urbanization and the impact of human activities, the hydrochemical characteristics of groundwater have become increasingly complex. It is important to identify the hydrochemical characteristics of groundwater in the water source areas and the cause mechanisms for the rational development and utilization of groundwater resources and for the insurance of local socio-economic sustainable development and ecological security. Based on the collection of groundwater samples, the mathematical statistics, correlation analysis, Piper three-line diagram, Gibbs diagram, and the ratio of groundwater main ions were applied to analyze the chemical characteristics and genetic mechanism of the groundwater in Jiuxian County, Tai'an City. The results showed that the chemical types of groundwater in the research area were diverse. The pore water was mainly HCO3-Ca, HCO3+SO4-Ca type, and the karst water was HCO3-Ca, HCO3-Ca+Mg, HCO3+SO4-Ca, and HCO3+SO4-Ca+Mg type. The chemical composition of pore water and karst water in the area was mainly controlled by both of the natural and human factors. The main ionic components of groundwater were affected by the interaction of water and rock. The ions mainly came from the dissolution of carbonate rock, calcite, and dolomite, and the cation exchange effect was weak. Moreover, the increase of the concentration of Cl− and NO3 − in groundwater was due to human activities.
[1] |
栾风娇, 周金龙, 贾瑞亮, 等.新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学,2017,36(2):380-389. doi: 10.7524/j.issn.0254-6108.2017.02.2016062001
LUAN F J, ZHOU J L, JIA R L, et al. Hydrochemical characteristic sand formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry,2017,36(2):380-389. doi: 10.7524/j.issn.0254-6108.2017.02.2016062001
|
[2] |
冯建国, 季德帅, 高宗军, 等.山东淄博大武水源地地下水水化学特征及水质评价[J]. 长江科学院院报,2020,37(9):18-23. doi: 10.11988/ckyyb.20190476
FENG J G, JI D S, GAO Z J, et al. Hydrochemical characteristics and water quality evaluation of groundwater in Zibo Dawu water source, Shandong Province[J]. Journal of Yangtze River Scientific Research Institute,2020,37(9):18-23. doi: 10.11988/ckyyb.20190476
|
[3] |
王晓曦, 王文科, 王周锋, 等. 滦河下游河水及沿岸地下水水化学特征及其形成作用[J]. 水文地质工程地质, 2014, 41(1): 25-33.
WANG X X, WANG W K, WANG Z F, et al. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe River, northeastern China[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 25-33.
|
[4] |
侯国华, 高茂生, 党显璋.唐山曹妃甸浅层地下水水化学特征及咸化成因[J]. 地学前缘,2019,26(6):49-57.
HOU G H, GAO M S, DANG X Z. Hydrochemical characteristics and salinization causes of shallow groundwater in Caofeidian, Tangshan City[J]. Earth Science Frontiers,2019,26(6):49-57.
|
[5] |
高宗军, 孙文广, 唐蒙生, 等. 泰安-旧县水源区岩溶水开采与地质环境的关系[J]. 山东地质, 2001, 17(增刊1): 86-91.
GAO Z J, SUN W G, TANG M S, et al. Relation between karstic water exploitation and geological environment in Tai'an-Jiuxian water source area[J]. Geology of Shandong, 2001, 17(Suppl 1): 86-91.
|
[6] |
张春荣.泰安市旧县水源地水质评价及保护措施[J]. 地下水,2007,29(1):72-74. doi: 10.3969/j.issn.1004-1184.2007.01.023
|
[7] |
陈伟清, 王延岭.山东省泰安市城区-旧县岩溶水系统地下水资源潜力评价[J]. 中国岩溶,2014,33(1):9-14. doi: 10.3969/j.issn.1001-4810.2014.01.002
CHEN W Q, WANG Y L. Evaluation of the potential groundwater resources in Tai'an urban-Jiuxian karst water system, Shandong Province[J]. Carsologica Sinica,2014,33(1):9-14. doi: 10.3969/j.issn.1001-4810.2014.01.002
|
[8] |
吴亚楠.泰安市城区-旧县水源地岩溶塌陷演化过程分析[J]. 中国岩溶,2017,36(1):94-100. doi: 10.11932/karst20170112
WU Y N. Analysis of karst collapse development in Tai'an-Jiuxian water source area[J]. Carsologica Sinica,2017,36(1):94-100. doi: 10.11932/karst20170112
|
[9] |
柳凤霞, 史紫薇, 钱会, 等.银川地区地下水水化学特征演化规律及水质评价[J]. 环境化学,2019,38(9):2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003
LIU F X, SHI Z W, QIAN H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area[J]. Environmental Chemistry,2019,38(9):2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003
|
[10] |
张勇. 荞麦地流域地下水的物质来源特征及健康风险评价研究[D]. 桂林: 桂林理工大学, 2019.
|
[11] |
杨延梅, 张田, 郑明霞, 等.基于水化学及当地稳定同位素的地下水硝酸盐污染空间分布特征及污染源解析[J]. 环境科学研究,2021,34(9):2164-2172.
YANG Y M, ZHANG T, ZHENG M X, et al. Spatial distribution characteristics and pollution source analysis of nitrate pollution in groundwater based on hydrochemistry and local stable isotopes[J]. Research of Environmental Sciences,2021,34(9):2164-2172.
|
[12] |
徐远志. 新疆伊犁河谷西部平原区地下水化学演化及水循环特征研究[D]. 郑州: 华北水利水电大学, 2021.
|
[13] |
林斯杰, 齐永强, 杨梦曦, 等.基于PCA-SOM的北京市平谷区地下水污染溯源[J]. 环境科学研究,2020,33(6):1337-1344.
LIN S J, QI Y Q, YANG M X, et al. Source analysis of groundwater pollution in Pinggu District of Beijing using PCA-SOM[J]. Research of Environmental Sciences,2020,33(6):1337-1344.
|
[14] |
洪慧, 李娟, 汪洋, 等.基于统计学方法的地下水水质评价与成因分析: 以齐齐哈尔市为例[J]. 环境工程技术学报,2019,9(4):431-439. doi: 10.12153/j.issn.1674-991X.2019.04.160
HONG H, LI J, WANG Y, et al. Groundwater quality evaluation and causes analysis based on statistical methods: taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology,2019,9(4):431-439. doi: 10.12153/j.issn.1674-991X.2019.04.160
|
[15] |
李书鉴. 黄土高原地下水水化学特征以及污染评价[D]. 杨凌: 西北农林科技大学, 2021.
|
[16] |
孙厚云, 毛启贵, 卫晓锋, 等.哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质,2018,45(6):1128-1141.
SUN H Y, MAO Q G, WEI X F, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami Basin[J]. Geology in China,2018,45(6):1128-1141.
|
[17] |
吴玺, 安永会, 魏世博, 等.黑河下游鼎新谷地浅层地下水水化学特征及演化规律[J]. 干旱区资源与环境,2021,35(9):103-109.
WU X, AN Y H, WEI S B, et al. Hydrochemical characteristics and evolution of shallow groundwater in Dingxin valley, lower reaches of Heihe River[J]. Journal of Arid Land Resources and Environment,2021,35(9):103-109.
|
[18] |
王忠亮, 甘爽, 董子涵, 等.河北省高碑店市浅层地下水水化学演化特征及其形成机制[J]. 桂林理工大学学报,2021,41(3):510-517. doi: 10.3969/j.issn.1674-9057.2021.03.004
WANG Z L, GAN S, DONG Z H, et al. Hydrochemical evolution characteristics and formation mechanism of shallow groundwater in Gaobeidian, Hebei[J]. Journal of Guilin University of Technology,2021,41(3):510-517. doi: 10.3969/j.issn.1674-9057.2021.03.004
|
[19] |
魏善明, 丁冠涛, 袁国霞, 等.山东省东汶河沂南地区地下水水化学特征及形成机理[J]. 地质学报,2021,95(6):1973-1983. doi: 10.3969/j.issn.0001-5717.2021.06.021
WEI S M, DING G T, YUAN G X, et al. Hydrochemical characteristics and formation mechanism of groundwater in Yi'nan, East Wenhe River Basin in Shandong Province[J]. Acta Geologica Sinica,2021,95(6):1973-1983. doi: 10.3969/j.issn.0001-5717.2021.06.021
|
[20] |
徐邑荣, 谷洪彪, 王贺, 等.乌苏里江流域左岸地下水水化学特征成因解析[J]. 安全与环境工程,2021,28(3):34-41.
XU Y R, GU H B, WANG H, et al. Analysis of hydrochemical characteristics and genesis of groundwater on the left bank of Wusuli River Basin[J]. Safety and Environmental Engineering,2021,28(3):34-41.
|
[21] |
王珺瑜, 王家乐, 靳孟贵.济南泉域岩溶水水化学特征及其成因[J]. 地球科学,2017,42(5):821-831.
WANG J Y, WANG J L, JIN M G. Hydrochemical characteristics and formation causes of karst water in Jinan Spring Catchment[J]. Earth Science,2017,42(5):821-831.
|
[22] |
於昊天, 马腾, 邓娅敏, 等.江汉平原东部地区浅层地下水水化学特征[J]. 地球科学,2017,42(5):685-692.
YU H T, MA T, DENG Y M, et al. Hydrochemical characteristics of shallow groundwater in eastern Jianghan plain[J]. Earth Science,2017,42(5):685-692.
|
[23] |
张春潮, 侯新伟, 李向全, 等.三姑泉域岩溶地下水水化学特征及形成演化机制[J]. 水文地质工程地质,2021,48(3):62-71.
ZHANG C C, HOU X W, LI X Q, et al. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology,2021,48(3):62-71.
|
[24] |
刘江涛, 蔡五田, 曹月婷, 等.沁河冲洪积扇地下水水化学特征及成因分析[J]. 环境科学,2018,39(12):5428-5439.
LIU J T, CAI W T, CAO Y T, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River[J]. Environmental Science,2018,39(12):5428-5439.
|
[25] |
冯建国, 鲁统民, 高宗军, 等.新泰市地下水水化学特征及成因探讨[J]. 山东科技大学学报(自然科学版),2020,39(1):11-20.
FENG J G, LU T M, GAO Z J, et al. Hydrochemical characteristics and causes of groundwater in Xintai City[J]. Journal of Shandong University of Science and Technology (Natural Science),2020,39(1):11-20.
|
[26] |
余东, 周金龙, 魏兴, 等.新疆喀什地区西部潜水水化学特征及演化规律分析[J]. 环境化学,2021,40(8):2493-2504. doi: 10.7524/j.issn.0254-6108.2020041301
YU D, ZHOU J L, WEI X, et al. Analysis of chemical characteristics and evolution of phreatic water in Western Kashgar Prefecture, Xinjiang[J]. Environmental Chemistry,2021,40(8):2493-2504. doi: 10.7524/j.issn.0254-6108.2020041301
|
[27] |
潘欢迎, 邹常健, 毕俊擘, 等.新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报,2021,40(3):194-203.
PAN H Y, ZOU C J, BI J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology,2021,40(3):194-203.
|
[28] |
张福初, 吴彬, 高凡, 等.奎屯河流域平原区地下水水化学特征及成因分析[J]. 环境科学研究,2021,34(7):1663-1671.
ZHANG F C, WU B, GAO F, et al. Hydrochemical characterization and cause of groundwater in plain area of Kuitun River Basin[J]. Research of Environmental Sciences,2021,34(7):1663-1671.
|
[29] |
成思, 温瑶, 许畅畅, 等.崇明岛浅层地下水化学特征及其影响机制[J]. 环境科学研究,2021,34(5):1120-1128.
CHENG S, WEN Y, XU C C, et al. Hydrochemical characteristics and impact mechanism of shallow groundwater in Chongming Island, China[J]. Research of Environmental Sciences,2021,34(5):1120-1128.
|
[30] |
乔肖翠, 李雪, 刘琰.2种方法在典型岩溶区地下水质量评价中的对比: 以地苏地下河为例[J]. 环境工程技术学报,2021,11(2):291-297. doi: 10.12153/j.issn.1674-991X.20200120
QIAO X C, LI X, LIU Y. Comparison of two methods in groundwater quality assessment in typical karst areas: taking Disu underground river as an example[J]. Journal of Environmental Engineering Technology,2021,11(2):291-297. doi: 10.12153/j.issn.1674-991X.20200120
|
[31] |
YIN S Y, XIAO Y, HAN P L, et al. Investigation of groundwater contamination and health implications in a typical semiarid basin of North China[J]. Water,2020,12(4):1137. ⊗ doi: 10.3390/w12041137
|