Citation: | XU Q K,DAI H L,ZHAO G Q,et al.Numerical simulation and response surface optimization of micro-vortex flocculation process for high turbidity water treatment[J].Journal of Environmental Engineering Technology,2022,12(1):62-69 doi: 10.12153/j.issn.1674-991X.20210620 |
[1] |
HOU C Y, SONG J E, YAN J G, et al. Growth indicator response of Zostera japonica under different salinity and turbidity stresses in the Yellow River Estuary, China[J]. Marine Geology,2020,424:106169. doi: 10.1016/j.margeo.2020.106169
|
[2] |
SUN Y J, ZHU C Y, SUN W Q, et al. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water[J]. Carbohydrate Polymers,2017,164:222-232. doi: 10.1016/j.carbpol.2017.02.010
|
[3] |
陈永平, 罗雯, 许春阳, 等.高浓度黏性泥沙絮团微观结构及其对沉降特性的影响[J]. 泥沙研究,2020,45(6):8-14.
CHEN Y P, LUO W, XU C Y, et al. Microstructure of cohesive sediment flocs with high concentration and its influence on the deposition characteristics[J]. Journal of Sediment Research,2020,45(6):8-14.
|
[4] |
祝苑, 潘丁瑞, 汪艳, 等.新型助凝剂海藻酸钠的助凝效能及作用机制研究[J]. 环境工程技术学报,2019,9(6):680-684. doi: 10.12153/j.issn.1674-991X.2019.05.150
ZHU Y, PAN D R, WANG Y, et al. Study on coagulation aid efficiency and mechanism of new coagulant sodium alginate[J]. Journal of Environmental Engineering Technology,2019,9(6):680-684. doi: 10.12153/j.issn.1674-991X.2019.05.150
|
[5] |
王艺, 戴红玲, 周政, 等.微涡流絮凝工艺处理低温低浊微污染水的优化[J]. 中国给水排水,2019,35(23):41-47.
WANG Y, DAI H L, ZHOU Z, et al. Optimization of micro Vortex flocculation process for treatment of low temperature and low turbidity micro-polluted water[J]. China Water & Wastewater,2019,35(23):41-47.
|
[6] |
DAI H L, QIU Z M, HU F P, et al. Floc Performance parameters during water treatment in a micro-Vortex flocculation process determined by machine vision[J]. Environmental Technology,2019,40(23):3062-3071. doi: 10.1080/09593330.2018.1465127
|
[7] |
伏雨, 龙云, 肖波, 等.栅条絮凝池内部流场及颗粒运动状态模拟分析[J]. 环境工程,2021,39(4):25-29.
FU Y, LONG Y, XIAO B, et al. Numerical simulation and analysis of flow field and particle motion in grid flocculation tank[J]. Environmental Engineering,2021,39(4):25-29.
|
[8] |
陈玉, 王军, 张培璇.穿孔旋流絮凝池加网格板的数值模拟[J]. 中国给水排水,2019,35(1):48-51.
CHEN Y, WANG J, ZHANG P X. Numerical simulation of revolving flow flocculation tank with grid plates[J]. China Water & Wastewater,2019,35(1):48-51.
|
[9] |
HE W P, LU W J, XU S R, et al. Comparative analysis on floc morphological evolution in cylindrical and square stirred-tank flocculating reactors with or without baffles: flocculation-test and CFD-aided investigations[J]. Chemical Engineering Research and Design,2019,147:278-291. doi: 10.1016/j.cherd.2019.05.012
|
[10] |
GANJARE A V, PATWARDHAN A W. CFD simulations of single-phase flow in settling tanks: comparison of turbulence models[J]. Indian Chemical Engineer,2020,62(4):413-426. doi: 10.1080/00194506.2019.1677514
|
[11] |
王璐, 熊乐航, 张远, 等.LNG接收站冷排水的温降及余氯对水环境影响的数值模拟: 以湄洲湾东吴港区为例[J]. 环境工程技术学报,2021,11(5):962-969. doi: 10.12153/j.issn.1674-991X.20210007
WANG L, XIONG L H, ZHANG Y, et al. Numerical simulation of temperature drop and residual chlorine effect on water environment in LNG receiving station: a case study in Dongwu port area of Meizhou Bay[J]. Journal of Environmental Engineering Technology,2021,11(5):962-969. doi: 10.12153/j.issn.1674-991X.20210007
|
[12] |
刘昶, 郑明霞, 孙源媛, 等.河道硬化对傍河地下水源补给结构及范围的影响[J]. 环境科学研究,2020,33(12):2820-2828.
LIU C, ZHENG M X, SUN Y Y, et al. Effects of river hardening on recharging structure and range of riverside groundwater source field[J]. Research of Environmental Sciences,2020,33(12):2820-2828.
|
[13] |
王子凌, 信欣, 刘琴, 等.响应面法优化CANON工艺处理猪场沼液脱氮性能研究[J]. 环境科学研究,2020,33(10):2326-2334.
WANG Z L, XIN X, LIU Q, et al. Optimization of denitrification performance of CANON process for treating anaerobic digester liquor of swine wastewater by response surface methodology[J]. Research of Environmental Sciences,2020,33(10):2326-2334.
|
[14] |
RAHMANNEZHAD J, MIRBOZORGI S A. CFD analysis and RSM-based design optimization of novel grooved micromixers with obstructions[J]. International Journal of Heat and Mass Transfer,2019,140:483-497. doi: 10.1016/j.ijheatmasstransfer.2019.05.107
|
[15] |
SABETI M B, HEJAZI M A, KARIMI A. Enhanced removal of nitrate and phosphate from wastewater by Chlorella vulgaris: multi-objective optimization and CFD simulation[J]. Chinese Journal of Chemical Engineering,2019,27(3):639-648. doi: 10.1016/j.cjche.2018.05.010
|
[16] |
林炜琛, 邵瑞朋, 王乔, 等.基于CFD和RSM的全效膜元件进水流道优化研究[J]. 膜科学与技术,2020,40(6):88-95.
LIN W C, SHAO R P, WANG Q A, et al. Optimization of feed channel of full-effective membrane modules based on CFD simulation and RSM analysis[J]. Membrane Science and Technology,2020,40(6):88-95.
|
[17] |
赵国强, 戴红玲, 王艺, 等.低温低浊水絮凝工艺的数值模拟与响应面优化试验研究[J]. 水资源与水工程学报,2021,32(1):117-124.
ZHAO G Q, DAI H L, WANG Y, et al. Numerical simulation and response surface optimization of low temperature and turbidity water flocculation process[J]. Journal of Water Resources and Water Engineering,2021,32(1):117-124.
|
[18] |
TOOR U A, DUONG T T, KO S Y, et al. Optimization of Fenton process for removing TOC and color from swine wastewater using response surface method (RSM)[J]. Journal of Environmental Management,2021,279:111625. doi: 10.1016/j.jenvman.2020.111625
|
[19] |
GHAFFARIRAAD M, GHANBARZADEH LAK M. Landfill leachate treatment through coagulation-flocculation with lime and bio-sorption by Walnut-shell[J]. Environmental Management,2021,68(2):226-239. doi: 10.1007/s00267-021-01489-4
|
[20] |
TASCA A L, MANNARINO G, GORI R, et al. Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology[J]. Water Science and Technology,2020,82(11):2331-2343. □ doi: 10.2166/wst.2020.485
|