Citation: | LI Q Q,YUAN P,YANG Q P,et al.Spatial variation characteristics and influencing factors of nitrogen and phosphorus ecological stoichiometry in the Yangtze River system[J].Journal of Environmental Engineering Technology,2022,12(2):573-580 doi: 10.12153/j.issn.1674-991X.20210663 |
[1] |
贺金生, 韩兴国.生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报,2010,34(1):2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002
HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology,2010,34(1):2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002
|
[2] |
田地, 严正兵, 方精云.植物生态化学计量特征及其主要假说[J]. 植物生态学报,2021,45(7):682-713. doi: 10.17521/cjpe.2020.0331
TIAN D, YAN Z B, FANG J Y. Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chinese Journal of Plant Ecology,2021,45(7):682-713. doi: 10.17521/cjpe.2020.0331
|
[3] |
PENUELAS J, POULTER B, SARDANS J, et al. Human-induced nitrogen−phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications,2013,4:2934. doi: 10.1038/ncomms3934
|
[4] |
PENUELAS J, JANSSENS I A, CIAIS P, et al. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health[J]. Global Change Biology,2020,26(4):1962-1985. doi: 10.1111/gcb.14981
|
[5] |
WALDRON P. Critical zone science comes of age[J/OL]. Eos, 2020. doi: 10.1029/2020eo148734.
|
[6] |
HARRISON J A, MARANGER R J, ALEXANDER R B, et al. The regional and global significance of nitrogen removal in lakes and reservoirs[J]. Biogeochemistry,2009,93(1/2):143-157.
|
[7] |
WOLLHEIM W M, BERNAL S, BURNS D A, et al. River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks[J]. Biogeochemistry,2018,141(3):503-521. doi: 10.1007/s10533-018-0488-0
|
[8] |
BEUSEN A H W, van BEEK L P H, BOUWMAN A F, et al. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water: description of IMAGE–GNM and analysis of performance[J]. Geoscientific Model Development,2015,8(12):4045-4067. doi: 10.5194/gmd-8-4045-2015
|
[9] |
AKBARZADEH Z, MAAVARA T, SLOWINSKI S, et al. Effects of damming on river nitrogen fluxes: a global analysis[J]. Global Biogeochemical Cycles,2019,33(11):1339-1357. doi: 10.1029/2019GB006222
|
[10] |
FINK G, ALCAMO J, FLÖRKE M, et al. Phosphorus loadings to the world's largest lakes: sources and trends[J]. Global Biogeochemical Cycles,2018,32(4):617-634. doi: 10.1002/2017GB005858
|
[11] |
MARCÉ R, ARMENGOL J. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics[J]. Hydrology and Earth System Sciences,2009,13(7):953-967. doi: 10.5194/hess-13-953-2009
|
[12] |
YAN W J, YIN C Q, TANG H X. Nutrient retention by multipond systems: mechanisms for the control of nonpoint source pollution[J]. Journal of Environmental Quality,1998,27(5):1009-1017.
|
[13] |
ASMALA E, CARSTENSEN J, CONLEY D J, et al. Efficiency of the coastal filter: nitrogen and phosphorus removal in the Baltic Sea[J]. Limnology and Oceanography, 2017, 62(Suppl 1): 222-238.
|
[14] |
ONANDIA G, LISCHEID G, KALETTKA T, et al. Biogeochemistry of natural ponds in agricultural landscape: lessons learned from modeling a kettle hole in Northeast Germany[J]. Science of the Total Environment,2018,634:1615-1630. doi: 10.1016/j.scitotenv.2018.04.014
|
[15] |
TAN E H, ZOU W B, JIANG X L, et al. Organic matter decomposition sustains sedimentary nitrogen loss in the Pearl River Estuary, China[J]. Science of the Total Environment,2019,648:508-517. doi: 10.1016/j.scitotenv.2018.08.109
|
[16] |
马金玉, 王文才, 罗千里, 等.黄大湖沉积物营养盐分布及来源解析[J]. 环境工程技术学报,2021,11(4):678-685. doi: 10.12153/j.issn.1674-991X.20200257
MA J Y, WANG W C, LUO Q L, et al. Distribution and source analysis of nutrients in sediments of Huangda Lake[J]. Journal of Environmental Engineering Technology,2021,11(4):678-685. doi: 10.12153/j.issn.1674-991X.20200257
|
[17] |
颜秉斐, 彭剑峰, 胡吉国, 等.河道滞留塘对城市河流净化效果的影响[J]. 环境工程技术学报,2016,6(2):133-138. doi: 10.3969/j.issn.1674-991X.2016.02.020
YAN B F, PENG J F, HU J G, et al. Effects of on-stream detention pond on polluted urban river purification[J]. Journal of Environmental Engineering Technology,2016,6(2):133-138. doi: 10.3969/j.issn.1674-991X.2016.02.020
|
[18] |
XIA X H, JIA Z M, LIU T, et al. Coupled nitrification-denitrification caused by suspended sediment (SPS) in rivers: importance of SPS size and composition[J]. Environmental Science & Technology,2017,51(1):212-221.
|
[19] |
刘俊, 田学达, 王琳杰, 等.洞庭湖表层沉积物营养盐空间分布及来源解析[J]. 环境工程技术学报,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180
LIU J, TIAN X D, WANG L J, et al. Spatial distribution and source analysis of surface sediment nutrients in Lake Dongting[J]. Journal of Environmental Engineering Technology,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180
|
[20] |
ANDERSEN I M, WILLIAMSON T J, GONZÁLEZ M J, et al. Nitrate, ammonium, and phosphorus drive seasonal nutrient limitation of chlorophytes, cyanobacteria, and diatoms in a hyper-eutrophic reservoir[J]. Limnology and Oceanography,2020,65(5):962-978. doi: 10.1002/lno.11363
|
[21] |
MAAVARA T, CHEN Q W, van METER K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment,2020,1(2):103-116.
|
[22] |
严广寒, 殷雪妍, 汪星, 等. 基于GAM模型的洞庭湖叶绿素a浓度与环境因子相关性分析[J/OL]. 中国环境科学.[2021-11-05].https://doi.org/10.19674/j.cnki.issn1000-6923.20210709.004.
YAN G H, YIN X Y, WANG X, et al. Relationship of chlorophyll a concentration and environmental factors in Dongting Lake based on GAM model[J/Ol]. China Environmental Science.[2021-11-05].https://doi.org/10.19674/j.cnki.issn1000-6923.20210709.004.
|
[23] |
TONG Y D, WANG M Z, PEÑUELAS J, et al. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(21):11566-11572. doi: 10.1073/pnas.1920759117
|
[24] |
MARANGER R, JONES S E, COTNER J B. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe[J]. Limnology and Oceanography Letters,2018,3(3):89-101. doi: 10.1002/lol2.10080
|
[25] |
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters,2007,10(12):1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x
|
[26] |
MAAVARA T, AKBARZADEH Z, van CAPPELLEN P. Global dam-driven changes to riverine N:P:Si ratios delivered to the coastal ocean[J/OL]. Geophysical Research Letters, 2020. doi: 10.1029/2020gl088288.
|
[27] |
WANG J N, YAN W J, CHEN N W, et al. Modeled long-term changes of DIN: DIP ratio in the Changjiang River in relation to Chl-α and DO concentrations in adjacent estuary[J]. Estuarine, Coastal and Shelf Science,2015,166:153-160. doi: 10.1016/j.ecss.2014.11.028
|
[28] |
HU M P, LIU Y M, ZHANG Y F, et al. Long-term (1980-2015) changes in net anthropogenic phosphorus inputs and riverine phosphorus export in the Yangtze River Basin[J]. Water Research,2020,177:115779. doi: 10.1016/j.watres.2020.115779
|
[29] |
水利部. 中国河流泥沙公报2019[R]. 北京: 中国水利水电出版社, 2020.
|
[30] |
水利部长江水利委员会. 长江泥沙公报2018[M]. 武汉: 长江出版社, 2019.
|
[31] |
刘录三, 黄国鲜, 王璠, 等.长江流域水生态环境安全主要问题、形势与对策[J]. 环境科学研究,2020,33(5):1081-1090.
LIU L S, HUANG G X, WANG F, et al. Main problems, situation and countermeasures of water eco-environment security in the Yangtze River Basin[J]. Research of Environmental Sciences,2020,33(5):1081-1090.
|
[32] |
LI Q Q, YU Q B, WANG F, et al. Nitrogen removal in the Chaohu Lake, China: implication in estimating lake N uptake velocity and modelling N removal efficiency of large lakes and reservoirs in the Changjiang River network[J]. Ecological Indicators,2021,124:107353. doi: 10.1016/j.ecolind.2021.107353
|
[33] |
WANG G Q, WANG J F, XIA X H, et al. Nitrogen removal rates in a frigid high-altitude river estimated by measuring dissolved N2 and N2O[J]. Science of the Total Environment,2018,645:318-328. doi: 10.1016/j.scitotenv.2018.07.090
|
[34] |
李明龙, 贾梦丹, 孙天成, 等.三峡库区非点源污染氮磷负荷时空变化及其来源解析[J]. 环境科学,2021,42(4):1839-1846.
LI M L, JIA M D, SUN T C, et al. Spatiotemporal change and source apportionment of non-point source nitrogen and phosphorus pollution loads in the Three Gorges Reservoir area[J]. Environmental Science,2021,42(4):1839-1846.
|
[35] |
严炜, 范建强, 陈葛成, 等.湖北省磷矿资源的空间富集规律及其产业布局[J]. 地质找矿论丛,2015,30(1):103-110. doi: 10.6053/j.issn.1001-1412.2015.01.015
YAN W, FAN J Q, CHEN G C, et al. The spatial concentration of phosphorous mineral resources and industrial layout in Hubei Province[J]. Contributions to Geology and Mineral Resources Research,2015,30(1):103-110. doi: 10.6053/j.issn.1001-1412.2015.01.015
|
[36] |
SHEN Z L, LIU Q. Nutrients in the Changjiang River[J]. Environmental Monitoring and Assessment,2009,153(1/2/3/4):27-44.
|
[37] |
LU X X, LI S Y, HE M, et al. Seasonal changes of nutrient fluxes in the Upper Changjiang Basin: an example of the Longchuanjiang River, China[J]. Journal of Hydrology,2011,405(3/4):344-351.
|
[38] |
SHAN J, YANG P P, SHANG X X, et al. Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon, and substrates[J]. Biology and Fertility of Soils,2018,54(3):341-348. ◇ doi: 10.1007/s00374-018-1263-z
|