Citation: | TIAN R Z,XU J,ZHANG Z Z,et al.Characteristics of fog layer during heavy pollution in winter in Beijing[J].Journal of Environmental Engineering Technology,2022,12(4):975-984 doi: 10.12153/j.issn.1674-991X.20210670 |
Most of the previous studies on the heavy pollution process in winter in Beijing focused on aerosol and paid less attention to fog in the process. Based on the L-band radiosonde and surface meteorological observation data of Beijing southern suburb observatory, as well as satellite data, such as MODIS and VISSR, the fogs during the period of heavy pollution in Beijing from January 12 to 15, 2013 were analyzed. The results showed that two radiation fog processes and two advection fog processes occurred in four days during the period. Each day's fog was completely different in terms of type, vertical distribution, formation process, stratification and so on. A mature radiation fog occurred on the morning of January 12, and the generation and development of radiation fog made the stratification of surface layer change from stable condition to near-neutral. Advection fog with 2 connected layers each with different origin occurred on the morning of January 13. The arrival of advection fog dissipated the fog in the surface layer and increased the vertical diffusion capability in the low atmosphere. Another radiation fog occurred on the morning of January 14, and the development was limited to its incipient stage and the lifetime was just about 2 h. There was ground inversion when the fog occurred. Deepened advection fog occurred on the morning of January 15. The height of fog top raised about 500 m compared with the last night fog. Given the complexity and variability in the fog formation, its vertical structure and influence on stratification during heavy pollution in winter in Beijing, research on fog layer and its effects on vertical diffusion and radiation during the heavy pollution needed to be strengthened.
[1] |
王跃思, 姚利, 王莉莉, 等.2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学:地球科学,2014,44(1):15-26.
|
[2] |
TAO M H, CHEN L F, XIONG X Z, et al. Formation process of the widespread extreme haze pollution over northern China in January 2013: implications for regional air quality and climate[J]. Atmospheric Environment,2014,98:417-425. doi: 10.1016/j.atmosenv.2014.09.026
|
[3] |
HAN F, XU J, HE Y J, et al. Vertical structure of foggy haze over the Beijing-Tianjin-Hebei area in January 2013[J]. Atmospheric Environment,2016,139:192-204. doi: 10.1016/j.atmosenv.2016.05.030
|
[4] |
LI Z Q, ECK T, ZHANG Y, et al. Observations of residual submicron fine aerosol particles related to cloud and fog processing during a major pollution event in Beijing[J]. Atmospheric Environment,2014,86:187-192. doi: 10.1016/j.atmosenv.2013.12.044
|
[5] |
WANG X F, CHEN J M, SUN J F, et al. Severe haze episodes and seriously polluted fog water in Ji'nan, China[J]. Science of the Total Environment,2014,493:133-137. doi: 10.1016/j.scitotenv.2014.05.135
|
[6] |
CHE H, XIA X, ZHU J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements[J]. Atmospheric Chemistry and Physics,2014,14(4):2125-2138. doi: 10.5194/acp-14-2125-2014
|
[7] |
邱昀, 安欣欣, 刘保献, 等.北京市气溶胶消光系数垂直特征及影响因子探讨[J]. 环境科学研究,2020,33(3):519-525.
QIU Y, AN X X, LIU B X, et al. Vertical distribution of aerosol extinction coefficient and its influencing factor in Beijing[J]. Research of Environmental Sciences,2020,33(3):519-525.
|
[8] |
BI J R, HUANG J P, HU Z Y, et al. Investigating the aerosol optical and radiative characteristics of heavy haze episodes in Beijing during January of 2013[J]. Journal of Geophysical Research:Atmospheres,2014,119(16):9884-9900. doi: 10.1002/2014JD021757
|
[9] |
刘锐泽, 方渊, 张韬, 等.青岛市夏季VOCs污染特征及来源解析[J]. 环境工程技术学报,2021,11(6):1041-1048. doi: 10.12153/j.issn.1674-991X.20210202
LIU R Z, FANG Y, ZHANG T, et al. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology,2021,11(6):1041-1048. doi: 10.12153/j.issn.1674-991X.20210202
|
[10] |
赵丽多, 任丽红, 李军, 等.云南省芒市春季PM2.5水溶性离子特征及来源分析[J]. 环境工程技术学报,2021,11(6):1057-1064. doi: 10.12153/j.issn.1674-991X.20210073
ZHAO L D, REN L H, LI J, et al. Characteristics and source analysis of water-soluble ions of PM2.5 during spring in Mang City, Yunnan Province[J]. Journal of Environmental Engineering Technology,2021,11(6):1057-1064. doi: 10.12153/j.issn.1674-991X.20210073
|
[11] |
徐双喜, 张众志, 杜晓惠, 等.京津冀及周边民用散煤燃烧控制对北京市PM2.5的影响[J]. 环境科学研究,2021,34(12):2876-2886.
XU S X, ZHANG Z Z, DU X H, et al. Impact of residential coal combustion control in Beijing-Tianjin-Hebei and surrounding region on PM2.5 in Beijing[J]. Research of Environmental Sciences,2021,34(12):2876-2886.
|
[12] |
周斌斌, 徐家骝.雾对大气污染物迁移扩散的影响[J]. 环境科学,1993,14(1):87-89.
ZHOU B B, XU J L. The effects of fogs on the transport and diffusion of air pollutants[J]. Environmental Science,1993,14(1):87-89.
|
[13] |
张光智, 卞林根, 王继志, 等.北京及周边地区雾形成的边界层特征[J]. 中国科学(D辑:地球科学),2005,35(增刊1):73-83.
|
[14] |
何晖, 郭学良, 刘建忠, 等.北京一次大雾天气边界层结构特征及生消机理观测与数值模拟研究[J]. 大气科学,2009,33(6):1174-1186. doi: 10.3878/j.issn.1006-9895.2009.06.05
HE H, GUO X L, LIU J Z, et al. Observation and simulation study of the boundary layer structure and the formation, dispersal mechanism of a heavy fog event in Beijing area[J]. Chinese Journal of Atmospheric Sciences,2009,33(6):1174-1186. doi: 10.3878/j.issn.1006-9895.2009.06.05
|
[15] |
王继志, 徐祥德, 杨元琴. 北京城市能见度及雾特征分析[J]. 应用气象学报, 2002, 13(增刊1): 160-169.
WANG J Z, XU X D, YANG Y Q. A study of characteristics of urban visibility and fog in Beijing and the surrounding area[J]. Quarterly Journal of Applied Meteorlolgy, 2002, 13(Suppl 1): 160-169.
|
[16] |
DUYNKERKE P G. Radiation fog: a comparison of model simulation with detailed observations[J]. Monthly Weather Review,1991,119(2):324-341. doi: 10.1175/1520-0493(1991)119<0324:RFACOM>2.0.CO;2
|
[17] |
DUYNKERKE P G. Observation of a quasi-periodic oscillation due to gravity waves in a shallow radiation fog[J]. Quarterly Journal of the Royal Meteorological Society,1991,117(502):1207-1224. doi: 10.1002/qj.49711750205
|
[18] |
高雅. 天津平流雾过程及其空中微物理特征研究[D]. 南京: 南京信息工程大学, 2019.
|
[19] |
吴彬贵, 张宏升, 汪靖, 等.一次持续性浓雾天气过程的水汽输送及逆温特征分析[J]. 高原气象,2009,28(2):258-267.
WU B G, ZHANG H S, WANG J, et al. Characteristics of the inversion and the water vapor transport during a duration fog event[J]. Plateau Meteorology,2009,28(2):258-267.
|
[20] |
蔡子颖, 韩素芹, 吴彬贵, 等.天津一次雾过程的边界层特征研究[J]. 气象,2012,38(9):1103-1109.
CAI Z Y, HAN S Q, WU B G, et al. Analysis on characteristics of atmospheric boundary layer during a fog process in Tianjin[J]. Meteorological Monthly,2012,38(9):1103-1109.
|
[21] |
YE X X, WU B G, ZHANG H S. The turbulent structure and transport in fog layers observed over the Tianjin area[J]. Atmospheric Research,2015,153:217-234. doi: 10.1016/j.atmosres.2014.08.003
|
[22] |
REN Y, ZHENG S W, WEI W, et al. Characteristics of turbulent transfer during episodes of heavy haze pollution in Beijing in winter 2016/17[J]. Journal of Meteorological Research,2018,32(1):69-80. doi: 10.1007/s13351-018-7072-3
|
[23] |
JU T T, WU B G, ZHANG H S, et al. Characteristics of turbulence and dissipation mechanism in a polluted radiation–advection fog life cycle in Tianjin[J]. Meteorology and Atmospheric Physics,2021,133(3):515-531. doi: 10.1007/s00703-020-00764-z
|
[24] |
李子华, 黄建平, 孙博阳, 等.辐射雾发展的爆发性特征[J]. 大气科学,1999,23(5):623-631. doi: 10.3878/j.issn.1006-9895.1999.05.13
LI Z H, HUANG J P, SUN B Y, et al. Burst characteristics during the development of radiation fog[J]. Scientia Atmospherica Sinica,1999,23(5):623-631. doi: 10.3878/j.issn.1006-9895.1999.05.13
|
[25] |
陆春松, 牛生杰, 杨军, 等.南京冬季平流雾的生消机制及边界层结构观测分析[J]. 南京气象学院学报,2008,31(4):520-529.
LU C S, NIU S J, YANG J, et al. An observational study on physical mechanism and boundary layer structure of winter advection fog in Nanjing[J]. Journal of Nanjing Institute of Meteorology,2008,31(4):520-529.
|
[26] |
杨军, 王蕾, 刘端阳, 等.一次深厚浓雾过程的边界层特征和生消物理机制[J]. 气象学报,2010,68(6):998-1006. doi: 10.11676/qxxb2010.094
YANG J, WANG L, LIU D Y, et al. The boundary layer structure and the evolution mechanisms of a deep dense fog event[J]. Acta Meteorologica Sinica,2010,68(6):998-1006. doi: 10.11676/qxxb2010.094
|
[27] |
赵玉广, 李江波, 李青春.华北平原3次持续性大雾过程的特征及成因分析[J]. 气象,2015,41(4):427-437. doi: 10.7519/j.issn.1000-0526.2015.04.005
ZHAO Y G, LI J B, LI Q C. Characteristics of three sustained dense fog events across the North China Plain[J]. Meteorological Monthly,2015,41(4):427-437. doi: 10.7519/j.issn.1000-0526.2015.04.005
|
[28] |
郭丽君, 郭学良.北京2009—2013年期间持续性大雾的类型、垂直结构及物理成因[J]. 大气科学,2016,40(2):296-310.
GUO L J, GUO X L. The type, vertical structure and physical formation mechanism of persistent heavy fog events during 2009-2013 in the Beijing region[J]. Chinese Journal of Atmospheric Sciences,2016,40(2):296-310.
|
[29] |
AGUSTÍ-PANAREDA A, VASILJEVIC D, BELJAARS A, et al. Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF[J]. Quarterly Journal of the Royal Meteorological Society,2009,135(640):595-617. doi: 10.1002/qj.396
|
[30] |
CIESIELSKI P E, JOHNSON R H, WANG J H. Correction of humidity biases in vaisala RS80-H sondes during NAME[J]. Journal of Atmospheric and Oceanic Technology,2009,26(9):1763-1780. doi: 10.1175/2009JTECHA1222.1
|
[31] |
BIAN J C, CHEN H B, VÖMEL H, et al. Intercomparison of humidity and temperature sensors: GTS1, Vaisala RS80, and CFH[J]. Advances in Atmospheric Sciences,2011,28(1):139-146. doi: 10.1007/s00376-010-9170-8
|
[32] |
郝民, 龚建东, 王瑞文, 等.中国L波段探空湿度观测资料的质量评估及偏差订正[J]. 气象学报,2015,73(1):187-199. doi: 10.11676/qxxb2015.002
HAO M, GONG J D, WANG R W, et al. The quality assessment and correction of the radiosonde humidity data biases of L-band in China[J]. Acta Meteorologica Sinica,2015,73(1):187-199. doi: 10.11676/qxxb2015.002
|
[33] |
郝民, 龚建东, 田伟红, 等.L波段探空仪湿度资料偏差订正及同化试验[J]. 应用气象学报,2018,29(5):559-570. doi: 10.11898/1001-7313.20180505
HAO M, GONG J D, TIAN W H, et al. Deviation correction and assimilation experiment on L-band radiosonde humidity data[J]. Journal of Applied Meteorological Science,2018,29(5):559-570. doi: 10.11898/1001-7313.20180505
|
[34] |
TAYLOR G I. The formation of fog and mist[J]. Quarterly Journal of the Royal Meteorological Society,1917,43(183):241-268. doi: 10.1002/qj.4970431832
|
[35] |
关月, 何立富.2013年1月大气环流和天气分析[J]. 气象,2013,39(4):531-536. doi: 10.7519/j.issn.1000-0526.2013.04.017
GUAN Y, HE L F. Analysis of the January 2013 atmosphere circulation and weather[J]. Meteorological Monthly,2013,39(4):531-536. doi: 10.7519/j.issn.1000-0526.2013.04.017
|
[36] |
ROACH W T, BROWN R, CAUGHEY S J, et al. The physics of radiation fog: I. a field study[J]. Quarterly Journal of the Royal Meteorological Society,1976,102(432):313-333.
|
[37] |
ROACH W T. Back to basics: fog: part 1. definitions and basic physics[J]. Weather,1994,49(12):411-415. doi: 10.1002/j.1477-8696.1994.tb05962.x
|
[38] |
余君. 自动气象站与人工站气温、相对湿度观测结果的差异及其原因的研究[D]. 北京: 中国气象科学研究院, 2007.
|
[39] |
苏腾, 王晓蕾, 叶松, 等.气象用湿敏电容传感器的稳定性测试与分析[J]. 中国测试,2014,40(3):85-88. doi: 10.11857/j.issn.1674-5124.2014.03.023
SU T, WANG X L, YE S, et al. Stability test and analysis for capacitive humidity sensor in meteorologic domain[J]. China Measurement & Test,2014,40(3):85-88. doi: 10.11857/j.issn.1674-5124.2014.03.023
|
[40] |
PRICE J, PORSON A, LOCK A. An observational case study of persistent fog and comparison with an ensemble forecast model[J]. Boundary-Layer Meteorology,2015,155(2):301-327. doi: 10.1007/s10546-014-9995-2
|
[41] |
PRICE J. Radiation fog: part I. observations of stability and drop size distributions[J]. Boundary-Layer Meteorology,2011,139(2):167-191. doi: 10.1007/s10546-010-9580-2
|
[42] |
GARRATT J R, BROST R A. Radiative cooling effects within and above the nocturnal boundary layer[J]. Journal of the Atmospheric Sciences,1981,38(12):2730-2746. doi: 10.1175/1520-0469(1981)038<2730:RCEWAA>2.0.CO;2
|
[43] |
SAVIJÄRVI H. Radiative and turbulent heating rates in the clear-air boundary layer[J]. Quarterly Journal of the Royal Meteorological Society,2006,132(614):147-161. doi: 10.1256/qj.05.61
|
[44] |
WÆRSTED E G, HAEFFELIN M, DUPONT J C, et al. Radiation in fog: quantification of the impact on fog liquid water based on ground-based remote sensing[J]. Atmospheric Chemistry and Physics,2017,17(17):10811-10835. doi: 10.5194/acp-17-10811-2017
|
[45] |
DOU J J, MIAO S G. Impact of mass human migration during Chinese New Year on Beijing urban heat island[J]. International Journal of Climatology,2017,37(11):4199-4210. doi: 10.1002/joc.5061
|
[46] |
张景哲, 刘启明.北京城市气温与下垫面结构关系的时相变化[J]. 地理学报,1988,43(2):159-168. doi: 10.3321/j.issn:0375-5444.1988.02.008
ZHANG J Z, LIU Q M. Temporal variations 1n the relationship between urban temperature and the structure of urban surface in Beijing[J]. Acta Geographica Sinica,1988,43(2):159-168. doi: 10.3321/j.issn:0375-5444.1988.02.008
|
[47] |
张佳华, 侯英雨, 李贵才, 等.北京城市及周边热岛日变化及季节特征的卫星遥感研究与影响因子分析[J]. 中国科学(D辑:地球科学),2005,35(增刊1):187-194.
|
[48] |
GULTEPE I, TARDIF R, MICHAELIDES S C, et al. Fog research: a review of past achievements and future perspectives[J]. Pure and Applied Geophysics,2007,164(6/7):1121-1159.
|
[49] |
ROACH W T. Back to basics: fog: part 2. the formation and dissipation of land fog[J]. Weather,1995,50(1):7-11. doi: 10.1002/j.1477-8696.1995.tb06053.x
|
[50] |
王自发, 李杰, 王哲, 等.2013年1月我国中东部强霾污染的数值模拟和防控对策[J]. 中国科学:地球科学,2014,44(1):3-14.
|
[51] |
ZHU J, ZHU B, HUANG Y, et al. PM2.5 vertical variation during a fog episode in a rural area of the Yangtze River Delta, China[J]. Science of the Total Environment,2019,685:555-563. ⊕ doi: 10.1016/j.scitotenv.2019.05.319
|