Volume 13 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
NAI C X,ZHANG X,LIU J C,et al.Study on detection method of landfill le achate level affected by HDPE membrane[J].Journal of Environmental Engineering Technology,2023,13(1):325-331 doi: 10.12153/j.issn.1674-991X.20210864
Citation: NAI C X,ZHANG X,LIU J C,et al.Study on detection method of landfill le achate level affected by HDPE membrane[J].Journal of Environmental Engineering Technology,2023,13(1):325-331 doi: 10.12153/j.issn.1674-991X.20210864

Study on detection method of landfill le achate level affected by HDPE membrane

doi: 10.12153/j.issn.1674-991X.20210864
  • Received Date: 2021-12-25
  • The water level of leachate will affect the stability of landfill and have the risk of leakage and pollution. When the leachate is stored on the HDPE impermeable membrane, the extreme differentiation characteristics of the resistivity characteristics of the two and the boundary effect and other factors make the least squares and other traditional geophysical inversion methods unable to accurately invert the actual resistivity distribution, and then according to the resistivity the difference feature locates the height of the leachate water level above the HDPE membrane. In order to accurately describe the fine distribution of the local resistivity of the leachate-HDPE membrane inside the garbage dump, The traditional high density electrical method (ERT) device is improved, and a detection device (C-ERT) is proposed, and the resistivity inversion model algorithm of BP neural network is adopted. The method is verified by COMSOL theoretical model and field data collected from a domestic waste landfill in Jiangxi Province, and compared with the least square algorithm (LS). The results show that the BP algorithm based on C-ERT can effectively identify the leachate area above HDPE membrane, and the recognition accuracy is about 83.2%, while LS inversion algorithm can not identify the leachate area.

     

  • loading
  • [1]
    徐亚, 能昌信, 刘峰, 等.填埋场长期渗漏的环境风险评价方法与案例研究[J]. 环境科学研究,2015,28(4):605-612.

    XU Y, NAI C X, LIU F, et al. Method and case study to evaluate long-term environmental risks from landfill leakage[J]. Research of Environmental Sciences,2015,28(4):605-612.
    [2]
    徐亚, 刘玉强, 刘景财, 等.填埋场渗漏风险评估的三级PRA模型及案例研究[J]. 环境科学研究,2014,27(4):447-454.

    XU Y, LIU Y Q, LIU J C, et al. 3-level of probability risk assessment on environmental risk of landfill leakage and it's case study[J]. Research of Environmental Sciences,2014,27(4):447-454.
    [3]
    詹良通, 管仁秋, 陈云敏, 等.某填埋场垃圾堆体边坡失稳过程监测与反分析[J]. 岩石力学与工程学报,2010,29(8):1697-1705.
    [4]
    孙汉武, 熊彬, 徐志锋, 等.高密度电法在垃圾填埋场勘探中的应用[J]. 矿产与地质,2020,34(6):1143-1148. doi: 10.19856/j.cnki.issn.1001-5663.2020.06.016

    SUN H W, XIONG B, XU Z F, et al. Application of high density electric method in the exploration of waste landfill site[J]. Mineral Resources and Geology,2020,34(6):1143-1148. doi: 10.19856/j.cnki.issn.1001-5663.2020.06.016
    [5]
    朱紫祥, 胡俊杰.高密度电法在岩溶地区溶洞勘查中的应用[J]. 工程地球物理学报,2017,14(3):290-293. doi: 10.3969/j.issn.1672-7940.2017.03.006

    ZHU Z X, HU J J. Application of high-density electrical method to exploration of Karst caves[J]. Chinese Journal of Engineering Geophysics,2017,14(3):290-293. doi: 10.3969/j.issn.1672-7940.2017.03.006
    [6]
    龚育龄, 叶腾飞, 董路, 等.卫生填埋场黏土衬层密实性试验研究[J]. 环境科学与技术,2011,34(9):9-11. doi: 10.3969/j.issn.1003-6504.2011.09.003

    GONG Y L, YE T F, DONG L, et al. Experimental study on compactness of clay liners in sanitary landfill[J]. Environmental Science & Technology,2011,34(9):9-11. doi: 10.3969/j.issn.1003-6504.2011.09.003
    [7]
    付士根, 杜文利, 胡家国.垃圾填埋场渗滤液水位地球物理探测技术初探[J]. 工程地球物理学报,2018,15(6):749-754. doi: 10.3969/j.issn.1672-7940.2018.06.011

    FU S G, DU W L, HU J G. Preliminary study on geophysics echnology of leachate level in landfill site[J]. Chinese Journal of Engineering Geophysics,2018,15(6):749-754. doi: 10.3969/j.issn.1672-7940.2018.06.011
    [8]
    张建智.时移电阻率法在垃圾填埋场渗滤液监测中的应用[J]. 中国煤炭地质,2019,31(10):80-85. doi: 10.3969/j.issn.1674-1803.2019.10.16
    [9]
    王玉玲, 能昌信, 王彦文, 等.2种电阻率法污染探测装置的抗噪声性能比较[J]. 环境科学研究,2013,26(8):879-884.

    WANG Y L, NAI C X, WANG Y W, et al. Comparison of anti-noise performance using wenner and dipole-dipole arrays in pollution survey[J]. Research of Environmental Sciences,2013,26(8):879-884.
    [10]
    EL-QADY G, USHIJIMA K. Inversion of DC resistivity data using neural networks[J]. Geophysical Prospecting,2001,49(4):417-430. doi: 10.1046/j.1365-2478.2001.00267.x
    [11]
    CALDERÓN-MACÍAS C, SEN M K, STOFFA P L. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting,2000,48(1):21-47. doi: 10.1046/j.1365-2478.2000.00171.x
    [12]
    徐海浪, 吴小平.电阻率二维神经网络反演[J]. 地球物理学报,2006,49(2):584-589. doi: 10.3321/j.issn:0001-5733.2006.02.035

    XU H L, WU X P. 2-D resistivity inversion using the neural network method[J]. Chinese Journal of Geophysics,2006,49(2):584-589. doi: 10.3321/j.issn:0001-5733.2006.02.035
    [13]
    NEYAMADPOUR A, TAIB S, WAN ABDULLAH W A T. Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: a MATLAB application[J]. Computers & Geosciences,2009,35(11):2268-2274.
    [14]
    NEYAMADPOUR A, WAN ABDULLAH W A T, TAIB S. Inversion of quasi-3D DC resistivity imaging data using artificial neural networks[J]. Journal of Earth System Science,2010,119(1):27-40. doi: 10.1007/s12040-009-0061-2
    [15]
    戴前伟, 江沸菠.基于混沌振荡PSO-BP算法的电阻率层析成像非线性反演[J]. 中国有色金属学报,2013,23(10):2897-2904.

    DAI Q W, JIANG F B. Nonlinear inversion for electrical resistivity tomography based on chaotic oscillation PSO-BP algorithm[J]. The Chinese Journal of Nonferrous Metals,2013,23(10):2897-2904.
    [16]
    能昌信, 孙晓晨, 徐亚, 等.基于深度卷积神经网络的场地污染非线性反演方法[J]. 中国环境科学,2019,39(12):5162-5172.

    NAI C X, SUN X C, XU Y, et al. A site pollution nonlinear inversion method based on deep convolutional neural network[J]. China Environmental Science,2019,39(12):5162-5172.
    [17]
    BUTLER S L, SINHA G. Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models[J]. Computers & Geosciences,2012,42:168-176.
    [18]
    王泽亚, 徐亚, 能昌信, 等.海滨垃圾填埋场渗滤液污染土壤的复电阻率特性[J]. 环境科学研究,2020,33(4):1021-1027.

    WANG Z Y, XU Y, NAI C X, et al. Complex resistivity properties of leachate-contaminated soil in coastal landfill[J]. Research of Environmental Sciences,2020,33(4):1021-1027.
    [19]
    朱勇, 能昌信, 陆晓春, 等.铬污染土壤超低频复电阻率频散特性[J]. 环境科学研究,2013,26(5):555-560.

    ZHU Y, NAI C X, LU X C, et al. The complex resistivity dispersion properties of chromium-contaminated soil in the ultra-low frequency power supply[J]. Research of Environmental Sciences,2013,26(5):555-560.
    [20]
    肖宏跃, 雷宛. 地电学教程[M]. 北京: 地质出版社, 2008: 150-163.
    [21]
    李春华, 胡文, 叶春, 等.基于BP神经网络预测地表水净化装置总氮的去除效果[J]. 环境工程技术学报,2018,8(6):651-655. doi: 10.3969/j.issn.1674-991X.2018.06.086

    LI C H, HU W, YE C, et al. Study on prediction of total nitrogen removal effect of a surface water purification device based on BP neural network[J]. Journal of Environmental Engineering Technology,2018,8(6):651-655. doi: 10.3969/j.issn.1674-991X.2018.06.086
    [22]
    林佳敏, 陈金良, 林晶晶, 等.BP神经网络和ARIMA模型对污水处理厂出水总氮浓度的模拟预测[J]. 环境工程技术学报,2019,9(5):573-578. doi: 10.12153/j.issn.1674-991X.2019.03.261

    LIN J M, CHEN J L, LIN J J, et al. The simulation and prediction of TN in wastewater treatment effluent using BP neural network and ARIMA model[J]. Journal of Environmental Engineering Technology,2019,9(5):573-578. ⊕ doi: 10.12153/j.issn.1674-991X.2019.03.261
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(301) PDF Downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return