Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
QIAN X Y,MAO S C,JIANG Y J,et al.Research progress of wetland carbon cycle in China based on bibliometrics[J].Journal of Environmental Engineering Technology,2023,13(2):742-752 doi: 10.12153/j.issn.1674-991X.20220029
Citation: QIAN X Y,MAO S C,JIANG Y J,et al.Research progress of wetland carbon cycle in China based on bibliometrics[J].Journal of Environmental Engineering Technology,2023,13(2):742-752 doi: 10.12153/j.issn.1674-991X.20220029

Research progress of wetland carbon cycle in China based on bibliometrics

doi: 10.12153/j.issn.1674-991X.20220029
  • Received Date: 2022-01-11
  • In order to explore the research status and development trend of the carbon cycle of wetlands in China, based on the relevant published literature in Web of Science (WoS) and CNKI databases from 2000 to 2020, the annual number of publications, citation frequency, authors, countries, institutions, journals, and keywords, etc. were analyzed in the past 20 years at home and abroad, using the bibliometrics method. Some suggestions for the future development were also put forward. The results showed that a total of 2 998 pieces of literature related to the carbon cycle of wetlands in China were published from 2000 to 2020, with the number of literature published in WoS and CNKI databases being 1 120 and 1 878, respectively. The annual number of literature published showed a trend of fluctuation and increase. The literature in WoS database covered 51 countries around the world, of which 1 075 were published in China, accounting for 95.98% of the total. Wetland, soil organic carbon and methane release were the key words with high mediating centrality, which were the core content of wetland carbon cycle research. Ecological Engineering and Acta Ecologica Sinica were the main journal carriers of foreign and Chinese literature in this field, respectively. The mechanism and flux of greenhouse gas exchange, the effect of microorganisms on carbon cycle, the ecological stoichiometry of carbon in wetland soil, and the carbon cycle and global change of wetland carbon cycle had been the hot topics in wetland carbon cycle research in China in the recent five years. The results of econometric analysis were helpful in comprehensively understanding the research status and development progress of wetland carbon cycle research in China, and providing references for wetland carbon research at home and abroad.

     

  • loading
  • [1]
    盛春蕾, 吕宪国, 尹晓敏, 等.基于Web of Science的1899—2010年湿地研究文献计量分析[J]. 湿地科学,2012,10(1):92-101. doi: 10.3969/j.issn.1672-5948.2012.01.013

    SHENG C L, LÜ X G, YIN X M, et al. Bibliometrical analysis of wetland research based on Web of Science from 1899 to 2010[J]. Wetland Science,2012,10(1):92-101. doi: 10.3969/j.issn.1672-5948.2012.01.013
    [2]
    谭永滨, 黄敏婷, 程朋根, 等.全球湖泊湿地研究的文献计量分析及可视化表达[J]. 西南大学学报(自然科学版),2021,43(2):120-129. doi: 10.13718/j.cnki.xdzk.2021.02.016

    TAN Y B, HUANG M T, CHENG P G, et al. A bibliometrical analysis of researches of global lake wetland and its visualized expression[J]. Journal of Southwest University (Natural Science Edition),2021,43(2):120-129. doi: 10.13718/j.cnki.xdzk.2021.02.016
    [3]
    杨艳丽. 苏打盐碱芦苇湿地碳氮磷累积及其在退化、恢复过程中的变化特征[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2020.
    [4]
    BULLOCK A, ACREMAN M. The role of wetlands in the hydrological cycle[J]. Hydrology and Earth System Sciences,2003,7(3):358-389. doi: 10.5194/hess-7-358-2003
    [5]
    吴燕锋, 章光新.流域湿地水文调蓄功能研究综述[J]. 水科学进展,2021,32(3):458-469. doi: 10.14042/j.cnki.32.1309.2021.03.014

    WU Y F, ZHANG G X. A review of hydrological regulation functions of watershed wetlands[J]. Advances in Water Science,2021,32(3):458-469. doi: 10.14042/j.cnki.32.1309.2021.03.014
    [6]
    MALTBY E, IMMIRZI P. Carbon dynamics in peatlands and other wetland soils regional and global perspectives[J]. Chemosphere,1993,27(6):999-1023. doi: 10.1016/0045-6535(93)90065-D
    [7]
    李璇, 栗忠飞.滇西北纳帕海高原湿地区域退化草甸土壤有机碳含量特征[J]. 环境科学研究,2017,30(7):1079-1088. doi: 10.13198/j.issn.1001-6929.2017.02.34

    LI X, LI Z F. Characteristics of soil organic carbon content of degraded meadows in napahai plateau wetland region in northwest Yunnan Province[J]. Research of Environmental Sciences,2017,30(7):1079-1088. doi: 10.13198/j.issn.1001-6929.2017.02.34
    [8]
    李富, 齐兴田, 宋春香, 等.不同干扰强度下三江平原湿地土壤温室气体排放对冻融作用的响应[J]. 环境科学研究,2020,33(8):1877-1884. doi: 10.13198/j.issn.1001-6929.2020.06.13

    LI F, QI X T, SONG C X, et al. Response of greenhouse gas emission to freeze-thaw with different disturbance intensity of the Sanjiang Plain wetland[J]. Research of Environmental Sciences,2020,33(8):1877-1884. doi: 10.13198/j.issn.1001-6929.2020.06.13
    [9]
    XIAO D R, DENG L, KIM D G, et al. Carbon budgets of wetland ecosystems in China[J]. Global Change Biology,2019,25(6):2061-2076. doi: 10.1111/gcb.14621
    [10]
    鲍达明.全国湿地保护工程规划实施要点[J]. 湿地科学与管理,2007,3(2):18-20. doi: 10.3969/j.issn.1673-3290.2007.02.006

    BAO D M. Essentials of the implementation of the nationwide wetland protection program plan[J]. Wetland Science & Management,2007,3(2):18-20. doi: 10.3969/j.issn.1673-3290.2007.02.006
    [11]
    宋长春, 宋艳宇, 王宪伟, 等.气候变化下湿地生态系统碳、氮循环研究进展[J]. 湿地科学,2018,16(3):424-431. doi: 10.13248/j.cnki.wetlandsci.2018.03.020

    SONG C C, SONG Y Y, WANG X W, et al. Advance in researches on carbon and nitrogen cycles in wetland ecosystems under climate change[J]. Wetland Science,2018,16(3):424-431. doi: 10.13248/j.cnki.wetlandsci.2018.03.020
    [12]
    KHALIL M A K. Non-CO2 greenhouse gases in the atmosphere[J]. Annual Review of Energy and the Environment,1999,24:645-661. doi: 10.1146/annurev.energy.24.1.645
    [13]
    刘春英, 周文斌.我国湿地碳循环的研究进展[J]. 土壤通报,2012,43(5):1264-1270.

    LIU C Y, ZHOU W B. Progress of research on carbon cycle of wetlands in China[J]. Chinese Journal of Soil Science,2012,43(5):1264-1270.
    [14]
    陈槐, 周舜, 吴宁, 等.湿地甲烷的产生、氧化及排放通量研究进展[J]. 应用与环境生物学报,2006,12(5):726-733. doi: 10.3321/j.issn:1006-687X.2006.05.029

    CHEN H, ZHOU S, WU N, et al. Advance in studies on production, oxidation and emission flux of methane from wetlands[J]. Chinese Journal of Applied & Environmental Biology,2006,12(5):726-733. doi: 10.3321/j.issn:1006-687X.2006.05.029
    [15]
    陈强, 潘英姿, 蒋卫国, 等.湿地甲烷排放估算模型的研究进展[J]. 环境工程技术学报,2012,2(1):67-75. doi: 10.3969/j.issn.1674-991X.2012.01.011

    CHEN Q, PAN Y Z, JIANG W G, et al. Advances in the research on estimation models of wetlands methane emission[J]. Journal of Environmental Engineering Technology,2012,2(1):67-75. doi: 10.3969/j.issn.1674-991X.2012.01.011
    [16]
    MITRA S, WASSMANN R, VLEK P. An appraisal of global wetland area and its organic carbon stock[J]. Current Science,2005,88(1):25-35.
    [17]
    高俊宽.文献计量学方法在科学评价中的应用探讨[J]. 图书情报知识,2005(2):14-17. doi: 10.3969/j.issn.1003-2797.2005.02.004

    GAO J K. Discussion on the application of bibliometrics in scientific evaluation[J]. Knowledge of Library and Information Science,2005(2):14-17. doi: 10.3969/j.issn.1003-2797.2005.02.004
    [18]
    张頔, 徐建玲, 李龙威.基于文献计量的人工湿地研究现状与发展趋势研究[J]. 环境科学与管理,2019,44(10):16-21. doi: 10.3969/j.issn.1673-1212.2019.10.004

    ZHANG D, XU J L, LI L W. Research status and development trend of constructed wetlands based on bibliometrics[J]. Environmental Science and Management,2019,44(10):16-21. doi: 10.3969/j.issn.1673-1212.2019.10.004
    [19]
    张媛, 张艳杰, 朱静, 等.基于文献计量的湿地构建前沿进展[J]. 环境工程技术学报,2021,11(1):107-113. doi: 10.12153/j.issn.1674-991X.20200050

    ZHANG Y, ZHANG Y J, ZHU J, et al. A bibliometric analysis of the frontier progress in wetland construction[J]. Journal of Environmental Engineering Technology,2021,11(1):107-113. doi: 10.12153/j.issn.1674-991X.20200050
    [20]
    李贝贝, 张永慧, 苏友波.基于CNKI数据库的土壤酶研究文献计量分析[J]. 广东农业科学,2021,48(8):148-155. doi: 10.16768/j.issn.1004-874X.2021.08.018

    LI B B, ZHANG Y H, SU Y B. Bibliometric analysis of soil enzyme research literature based on CNKI database[J]. Guangdong Agricultural Sciences,2021,48(8):148-155. doi: 10.16768/j.issn.1004-874X.2021.08.018
    [21]
    严陶韬, 薛建辉.中国生物多样性研究文献计量分析[J]. 生态学报,2021,41(19):7879-7892.

    YAN T T, XUE J H. Bibliometric analysis of biodiversity research literature in China[J]. Acta Ecologica Sinica,2021,41(19):7879-7892.
    [22]
    赵蓉英, 许丽敏.文献计量学发展演进与研究前沿的知识图谱探析[J]. 中国图书馆学报,2010,36(5):60-68. doi: 10.13530/j.cnki.jlis.2010.05.006

    ZHAO R Y, XU L M. The knowledge map of the evolution and research frontiers of the bibliometrics[J]. Journal of Library Science in China,2010,36(5):60-68. doi: 10.13530/j.cnki.jlis.2010.05.006
    [23]
    CHEN C M, IBEKWE-SANJUAN F, HOU J H. The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis[J]. Journal of the American Society for Information Science and Technology,2010,61(7):1386-1409. doi: 10.1002/asi.21309
    [24]
    陈悦, 陈超美, 刘则渊, 等.CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009

    CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science,2015,33(2):242-253. doi: 10.3969/j.issn.1003-2053.2015.02.009
    [25]
    LIU S B, CHEN C M, DING K, et al. Literature retrieval based on citation context[J]. Scientometrics,2014,101(2):1293-1307. doi: 10.1007/s11192-014-1233-7
    [26]
    GUO Y D, SONG C C, TAN W W, et al. Hydrological processes and permafrost regulate magnitude, source and chemical characteristics of dissolved organic carbon export in a peatland catchment of northeastern China[J]. Hydrology and Earth System Sciences,2018,22(2):1081-1093. doi: 10.5194/hess-22-1081-2018
    [27]
    YU X Y, SONG C C, SUN L, et al. Growing season methane emissions from a permafrost peatland of northeast China: observations using open-path eddy covariance method[J]. Atmospheric Environment,2017,153:135-149. doi: 10.1016/j.atmosenv.2017.01.026
    [28]
    SONG C C, WANG X W, MIAO Y Q, et al. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China[J]. Science of the Total Environment,2014,487:604-610. doi: 10.1016/j.scitotenv.2013.09.083
    [29]
    SONG Y Y, SONG C C, HOU A X, et al. Temperature, soil moisture, and microbial controls on CO2 and CH4 emissions from a permafrost peatland[J/OL]. Environmental Progress & Sustainable Energy, 2021. https://doi.org/10.1002/ep.13693.
    [30]
    SUN X X, WANG H J, SONG C C, et al. Response of methane and nitrous oxide emissions from peatlands to permafrost thawing in Xiaoxing'an Mountains, Northeast China[J]. Atmosphere,2021,12(2):222. doi: 10.3390/atmos12020222
    [31]
    SUN L, SONG C C, LAFLEUR P M, et al. Wetland-atmosphere methane exchange in Northeast China: a comparison of permafrost peatland and freshwater wetlands[J]. Agricultural and Forest Meteorology,2018,249:239-249. doi: 10.1016/j.agrformet.2017.11.009
    [32]
    SONG C C, XU X F, TIAN H, et al. Ecosystem–atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China[J]. Global Change Biology,2009,15(3):692-705. doi: 10.1111/j.1365-2486.2008.01821.x
    [33]
    JU H Q, SI W Y, CHUN S C, et al. Contribution of winter fluxes to the annual CH4, CO2 and N2O emissions from freshwater marshes in the Sanjiang Plain[J]. Journal of Environmental Sciences,2006,18(2):270-275.
    [34]
    ZHU X Y, SONG C C, CHEN W W, et al. Effects of water regimes on methane emissions in peatland and gley marsh[J]. Vadose Zone Journal,2018,17(1):1-7.
    [35]
    李英臣, 宋长春.氮磷输入对湿地生态系统碳蓄积的影响[J]. 土壤通报,2012,43(1):224-229.

    LI Y C, SONG C C. Effects of exogenous nitrogen and phosphorus input on carbon accumulation in wetland system[J]. Chinese Journal of Soil Science,2012,43(1):224-229.
    [36]
    王维奇, 徐玲琳, 曾从盛, 等.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J]. 生态学报,2011,31(23):134-139.

    WANG W Q, XU L L, ZENG C S, et al. Carbon, nitrogen and phosphorus ecological stoichiometric ratios among live plant-litter-soil systems in estuarine wetland[J]. Acta Ecologica Sinica,2011,31(23):134-139.
    [37]
    HU M J, PEÑUELAS J, SARDANS J, et al. Stoichiometry patterns of plant organ N and P in coastal herbaceous wetlands along the East China Sea: implications for biogeochemical niche[J]. Plant and Soil,2018,431(1):273-288.
    [38]
    HU M J, PEÑUELAS J, SARDANS J, et al. Effects of nitrogen loading on emission of carbon gases from estuarine tidal marshes with varying salinity[J]. Science of the Total Environment,2019,667:648-657. doi: 10.1016/j.scitotenv.2019.02.429
    [39]
    WANG W Q, SARDANS J, WANG C, et al. The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China[J]. Global Change Biology,2019,25(2):733-743. doi: 10.1111/gcb.14491
    [40]
    CHENG Y R, ZHA Y, TONG C, et al. Plant population dynamics in a degraded coastal wetland and implications for the carbon cycle[J]. Wetlands,2020,40(5):1617-1625. doi: 10.1007/s13157-020-01268-7
    [41]
    TONG C, LUO M, HUANG J F, et al. Greenhouse gas fluxes and porewater geochemistry following short-term pulses of saltwater and Fe(Ⅲ) in a subtropical tidal freshwater estuarine marsh[J]. Geoderma,2020,369:114340. doi: 10.1016/j.geoderma.2020.114340
    [42]
    HU M J, SARDANS J, YANG X Y, et al. Patterns and environmental drivers of greenhouse gas fluxes in the coastal wetlands of China: a systematic review and synthesis[J]. Environmental Research,2020,186:109576. doi: 10.1016/j.envres.2020.109576
    [43]
    LU M Z, ZOU Y C, XUN Q L, et al. Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades[J]. Global Change Biology,2021,27(16):3837-3845. doi: 10.1111/gcb.15671
    [44]
    XIAO Y, HUANG Z G, LU X G. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China[J]. Ecological Engineering,2015,82:381-389. doi: 10.1016/j.ecoleng.2015.05.015
    [45]
    王延吉, 神祥金, 吕宪国.1980—2015年东北沼泽湿地景观格局及气候变化特征[J]. 地球与环境,2020,48(3):348-357.

    WANG Y J, SHEN X J, LÜ X G. Change characteristics of landscape pattern and climate in marsh areas of Northeast China during 1980-2015[J]. Earth and Environment,2020,48(3):348-357.
    [46]
    ZHANG Z Q, ZHONG J J, LV X G, et al. Climate, vegetation, and human influences on late-Holocene fire regimes in the Sanjiang Plain, Northeastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2015,438:1-8. doi: 10.1016/j.palaeo.2015.07.028
    [47]
    ZHENG H F, SHEN G Q, SHANG L Y, et al. Efficacy of conservation strategies for endangered oriental white storks (Ciconia boyciana) under climate change in Northeast China[J]. Biological Conservation,2016,204:367-377. doi: 10.1016/j.biocon.2016.11.004
    [48]
    CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J/OL]. Global Biogeochemical Cycles, 2003. https://doi.org/10.1029/2002GB001917.
    [49]
    MORENO-MATEOS D, POWER M E, COMÍN F A, et al. Structural and functional loss in restored wetland ecosystems[J]. PLoS Biology,2012,10(1):e1001247. doi: 10.1371/journal.pbio.1001247
    [50]
    SAUNOIS M, BOUSQUET P, POULTER B, et al. The global methane budget 2000-2012[J]. Earth System Science Data,2016,8(2):697-751. doi: 10.5194/essd-8-697-2016
    [51]
    郭兵, 杨庭, 肖成磊, 等.基于Web of Science数据库石油污染土壤生物修复研究的文献计量分析[J]. 现代化工,2021,41(2):11-18.

    GUO B, YANG T, XIAO C L, et al. Bibliometric analysis on bioremediation research on petroleum contaminated soil based on Web of Science database[J]. Modern Chemical Industry,2021,41(2):11-18.
    [52]
    顾斌杰, 赵海霞, 骆新燎, 等.基于文献计量的减污降碳协同减排研究进展与展望[J]. 环境工程技术学报,2023,13(1):85-95. doi: 10.12153/j.issn.1674-991X.20210780

    GU B J, ZHAO H X, LUO X L, et al. Research progress and prospect of collaborative reduction of pollution and carbon dioxide based on bibliometrics[J]. Journal of Environmental Engineering Technology,2023,13(1):85-95. ◇ doi: 10.12153/j.issn.1674-991X.20210780
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Article Metrics

    Article Views(682) PDF Downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return