Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
WU Q,DAI L Q,REN Y F,et al.Impact of Three Gorges Reservoir water supply regulation on habitat suitability of typical submerged plants in East Dongting Lake[J].Journal of Environmental Engineering Technology,2023,13(2):617-624 doi: 10.12153/j.issn.1674-991X.20220047
Citation: WU Q,DAI L Q,REN Y F,et al.Impact of Three Gorges Reservoir water supply regulation on habitat suitability of typical submerged plants in East Dongting Lake[J].Journal of Environmental Engineering Technology,2023,13(2):617-624 doi: 10.12153/j.issn.1674-991X.20220047

Impact of Three Gorges Reservoir water supply regulation on habitat suitability of typical submerged plants in East Dongting Lake

doi: 10.12153/j.issn.1674-991X.20220047
  • Received Date: 2022-01-17
  • Submerged plants are important species for ecological restoration of water in East Dongting Lake, and water depth is one of the key hydrodynamic factors affecting the growth of submerged plants. In order to quantitatively describe the impact of different water supply modes of the Three Gorges Reservoir (TGR) on typical submerged plants growth habitat in East Dongting Lake, taking Vallisneria spinulosa as the target species, the relationship between different outflow from TGR and the weighted usable area (WUA) of Vallisneria spinulosa growth habitat in East Dongting Lake during TGR water supply operation was established by using physical habitat simulation model (PHABSIM). The results showed that the suitable water depth range for the growth habitat of Vallisneria spinulosa was 0.2~1.8 m, the optimal water depth range was 0.5~1.0 m. After TGR implementing the water supply operation, WUA of Vallisneria spinulosa growth habitat in East Dongting Lake showed a uniform upward trend totally. During the period of TGR water supply, the outflow was 5 500~10 500 m3/s. With the increase of the outflow of TGR, WUA corresponding to the optimal water depth range for Vallisneria spinulosa growth habitat firstly increased and then decreased. When the outflow range was 9 500 m3/s, the maximum WUA was 74.46 km2. It could be considered that the optimal outflow range of Vallisneria spinulosa was 8 500~10 500 m3/s. The results were expected to provide reference for restoring and protecting the water ecological environment in East Dongting Lake through TGR ecological scheduling.

     

  • loading
  • [1]
    戴凌全, 蔡卓森, 刘海波, 等.三峡水库枯水期不同运行方式对洞庭湖生态补水效果研究[J]. 水资源与水工程学报,2019,30(3):170-175.

    DAI L Q, CAI Z S, LIU H B, et al. The effect of Three Gorges Reservoir operation scheme during the dry season on ecological water supplement of Dongting Lake[J]. Journal of Water Resources and Water Engineering,2019,30(3):170-175.
    [2]
    段蕴歆, 李景保, 吕殿青, 等.三峡水库运行下长江与洞庭湖交汇区水情态势及相互顶托作用[J]. 长江流域资源与环境,2019,28(10):2471-2483.

    DUAN Y X, LI J B, LǛ D Q, et al. Hydrological conditions and the mutual supporting effects at the intersection area of Dongting Lake and Yangtze River under the operation of the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin,2019,28(10):2471-2483.
    [3]
    ZHU Y W, WANG H X, GUO W X. The impacts of water level fluctuations of East Dongting Lake on habitat suitability of migratory birds[J]. Ecological Indicators,2021,132:108277. doi: 10.1016/j.ecolind.2021.108277
    [4]
    王丽婧, 田泽斌, 李莹杰, 等.洞庭湖近30年水环境演变态势及影响因素研究[J]. 环境科学研究,2020,33(5):1140-1149.

    WANG L J, TIAN Z B, LI Y J, et al. Trend and driving factors of water environment change in Dongting Lake in the last 30 years[J]. Research of Environmental Sciences,2020,33(5):1140-1149.
    [5]
    王婷, 王坤, 王丽婧, 等.三峡工程运行对洞庭湖水环境及富营养化风险影响评述[J]. 环境科学研究,2018,31(1):15-24.

    WANG T, WANG K, WANG L J, et al. Impacts of the Three Gorges Dam operation on water environment and eutrophication of Dongting Lake: a review[J]. Research of Environmental Sciences,2018,31(1):15-24.
    [6]
    张光贵, 黄博.洞庭湖表层沉积物营养盐污染特征与评价[J]. 环境工程技术学报,2014,4(6):514-519. doi: 10.3969/j.issn.1674-991X.2014.06.081

    ZHANG G G, HUANG B. Pollution characteristics and evaluation of surface sediment nutrients in Dongting Lake[J]. Journal of Environmental Engineering Technology,2014,4(6):514-519. doi: 10.3969/j.issn.1674-991X.2014.06.081
    [7]
    黄代中, 万群, 李利强, 等.洞庭湖近20年水质与富营养化状态变化[J]. 环境科学研究,2013,26(1):27-33.

    HUANG D Z, WAN Q, LI L Q, et al. Changes of water quality and eutrophic state in recent 20 years of Dongting Lake[J]. Research of Environmental Sciences,2013,26(1):27-33.
    [8]
    张晓波. 江湖关系变化背景下洞庭湖湿地植物恢复潜力与环境影响因子[D]. 北京: 北京林业大学, 2021.
    [9]
    吴振斌. 水生植物与水体生态修复[M]. 北京: 科学出版社, 2011.
    [10]
    李琳, 岳春雷, 张华, 等.不同沉水植物净水能力与植株体细菌群落组成相关性[J]. 环境科学,2019,40(11):4962-4970.

    LI L, YUE C L, ZHANG H, et al. Correlation between water purification capacity and bacterial community composition of different submerged macrophytes[J]. Environmental Science,2019,40(11):4962-4970.
    [11]
    代亮亮, 张云, 李双双, 等.不同营养水平下沉水植物的抑藻效应[J]. 环境科学学报,2019,39(6):1801-1807.

    DAI L L, ZHANG Y, LI S S, et al. Inhibition of algae growth by submerged macrophyte at different nutrient levels[J]. Acta Scientiae Circumstantiae,2019,39(6):1801-1807.
    [12]
    常宝亮, 上官凌飞, 沈志国, 等.六种沉水植物对三种不同氮磷浓度水体的净化效果[J]. 给水排水,2021,57(增刊 1):230-236.

    CHANG B L, SHANGGUAN L F, SHEN Z G, et al. Purification effect of six submerged macrophytes on three different concentrations of nitrogen and phosphorus[J]. Water & Wastewater Engineering,2021,57(Suppl 1):230-236.
    [13]
    张嵘梅, 马博馨, 杨志杰, 等.沉水植物苦草属在水体环境修复中的研究进展和应用现状[J]. 中国农学通报,2016,32(28):144-154. doi: 10.11924/j.issn.1000-6850.casb16020038

    ZHANG R M, MA B X, YANG Z J, et al. Research advances and application situation of Vallisneria in water environmental restoration[J]. Chinese Agricultural Science Bulletin,2016,32(28):144-154. doi: 10.11924/j.issn.1000-6850.casb16020038
    [14]
    梁婕, 蔡青, 郭生练, 等.基于MODIS的洞庭湖湿地面积对水文的响应[J]. 生态学报,2012,32(21):6628-6635. doi: 10.5846/stxb201110041448

    LIANG J, CAI Q, GUO S L, et al. MODIS-based analysis of wetland area responses to hydrological processes in the Dongting Lake[J]. Acta Ecologica Sinica,2012,32(21):6628-6635. doi: 10.5846/stxb201110041448
    [15]
    熊鹰, 汪敏, 袁海平, 等.洞庭湖区景观生态风险评价及其时空演化[J]. 生态环境学报,2020,29(7):1292-1301.

    XIONG Y, WANG M, YUAN H P, et al. Landscape ecological risk assessment and its spatio-temporal evolution in Dongting Lake area[J]. Ecology and Environmental Sciences,2020,29(7):1292-1301.
    [16]
    熊秉红, 李伟.我国苦草属(Vallisneria L. )植物的生态学研究[J]. 武汉植物学研究,2000,18(6):500-508.

    XIONG B H, LI W. Ecological studies on Vallisneria L. in China[J]. Journal of Wuhan Botanical Research,2000,18(6):500-508.
    [17]
    LI Q S, HAN Y Q, CHEN K Q, et al. Effects of water depth on the growth of the submerged macrophytes Vallisneria natans and Hydrilla verticillata: implications for water level management[J]. Water,2021,13(18):2590. doi: 10.3390/w13182590
    [18]
    KANG C X, DAI X Z, TONG Z G, et al. Effects of water depth and sediment nutrients on Vallisneria spinulosa in Lake Poyang[J]. Journal of Freshwater Ecology,2019,34(1):263-272. doi: 10.1080/02705060.2018.1559243
    [19]
    赵风斌, 徐后涛, 刘艳红, 等.不同水深下异龙湖苦草的生长特性[J]. 湿地科学,2017,15(2):214-220.

    ZHAO F B, XU H T, LIU Y H, et al. Growth characteristics of Vallisneria natans under different water depths in Yilong Lake[J]. Wetland Science,2017,15(2):214-220.
    [20]
    顾燕飞, 王俊, 王洁, 等.不同水深条件下沉水植物苦草(Vallisneria natans)的形态响应和生长策略[J]. 湖泊科学,2017,29(3):654-661. doi: 10.18307/2017.0314

    GU Y F, WANG J, WANG J, et al. Morphological response and growth strategy of the submerged macrophyte Vallisneria natans under different water depths[J]. Journal of Lake Sciences,2017,29(3):654-661. doi: 10.18307/2017.0314
    [21]
    李跃龙. 洞庭湖的演变、开发和治理简史[M]. 长沙: 湖南大学出版社, 2014: 119-212.
    [22]
    余姝辰. 基于历史地图和多源遥感数据的近百年来洞庭湖区江湖格局演化[D]. 北京: 中国地质大学,2021.
    [23]
    彭焕华, 张静, 梁继, 等.东洞庭湖水面面积变化监测及其与水位的关系[J]. 长江流域资源与环境,2020,29(12):2770-2780.

    PENG H H, ZHANG J, LIANG J, et al. Monitoring the changes of water area and its relation with water levels of hydrological station in east Dongting Lake[J]. Resources and Environment in the Yangtze Basin,2020,29(12):2770-2780.
    [24]
    东洞庭湖国家级自然保护区简介[EB/OL].(2022-02-10)[2022-02-20]. https://www.bilibili.com/read/cv15200847/.
    [25]
    易雨君, 张尚弘.水生生物栖息地模拟方法及模型综述[J]. 中国科学:技术科学,2019,49(4):363-377. doi: 10.1360/N092018-00217

    YI Y J, ZHANG S H. Review of aquatic species habitat simulation method and modelling[J]. Scientia Sinica (Technologica),2019,49(4):363-377. doi: 10.1360/N092018-00217
    [26]
    张文鸽, 黄强, 蒋晓辉.基于物理栖息地模拟的河道内生态流量研究[J]. 水科学进展,2008,19(2):192-197.

    ZHANG W G, HUANG Q, JIANG X H. Study on instream ecological flow based on physical habitat simulation[J]. Advances in Water Science,2008,19(2):192-197.
    [27]
    班璇, 郭舟, 熊兴基, 等.长江中游典型河段底栖动物的物理栖息地模型构建与应用[J]. 水利学报,2020,51(8):936-946.

    BAN X, GUO Z, XIONG X J, et al. Applying physical habitat model of zoobenthos in typical reaches of the Yangtze River[J]. Journal of Hydraulic Engineering,2020,51(8):936-946.
    [28]
    张萌, 刘足根, 李雄清, 等.长江中下游浅水湖泊水生植被生态修复种的筛选与应用研究[J]. 生态科学,2014,33(2):344-352.

    ZHANG M, LIU Z G, LI X Q, et al. Studies of the selection and application of suitable hydrophyte species on lake restoration in the middle and lower reaches of Yangtze River[J]. Ecological Science,2014,33(2):344-352.
    [29]
    陈磊, 叶其刚, 潘丽珠, 等.长江中下游湖泊两种混生苦草属植物生活史特征与共存分布格局[J]. 植物生态学报,2008,32(1):106-113.

    CHEN L, YE Q G, PAN L Z, et al. Vallisneria species in lakes of the middle-lower reaches of the Yangtze River of China[J]. Journal of Plant Ecology,2008,32(1):106-113.
    [30]
    黎磊, 张笑辰, 秦海明, 等.食块茎水鸟及水位对沙湖沉水植物冬芽分布的影响[J]. 生态学杂志,2015,34(3):661-669.

    LI L, ZHANG X C, QIN H M, et al. Effects of tuber-feeding waterbird guild and water level fluctuation on tuber distribution of submerged macrophytes in Shahu Lake[J]. Chinese Journal of Ecology,2015,34(3):661-669.
    [31]
    王瑞, 何亮, 张萌, 等.中国苦草属(Vallisneria)植物萌发与生长的影响因素[J]. 湖泊科学,2021,33(5):1315-1333. doi: 10.18307/2021.0503

    WANG R, HE L, ZHANG M, et al. Factors on seed germination, tuber sprout and plant growth of Vallisneria species in China[J]. Journal of Lake Sciences,2021,33(5):1315-1333. doi: 10.18307/2021.0503
    [32]
    李俊. 鄱阳湖水位和氮浓度变化对刺苦草的影响[D]. 南昌: 华东交通大学, 2021.
    [33]
    刘向东, 侯志勇, 谢永宏, 等.水位对洞庭湖湿地4种典型沉水植物的影响[J]. 湖泊科学,2021,33(1):181-191. doi: 10.18307/2021.0113

    LIU X D, HOU Z Y, XIE Y H, et al. Influence of water level on four typical submerged plants in wetlands of Lake Dongting[J]. Journal of Lake Sciences,2021,33(1):181-191. doi: 10.18307/2021.0113
    [34]
    MORIASI D N, ARNOLD J G, LIEW M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE,2007,50(3):885-900. doi: 10.13031/2013.23153
    [35]
    周根苗, 李新建, 王志强, 等.东洞庭湖湿地景观格局演变及稳定性研究[J]. 湖南林业科技,2021,48(4):79-86.

    ZHOU G M, LI X J, WANG Z Q, et al. Study on the change and stability of wetland landscape pattern in East Dongting Lake[J]. Hunan Forestry Science & Technology,2021,48(4):79-86.
    [36]
    周静, 万荣荣, 吴兴华, 等.洞庭湖湿地植被长期格局变化(1987—2016年)及其对水文过程的响应[J]. 湖泊科学,2020,32(6):1723-1735. doi: 10.18307/2020.0613

    ZHOU J, WAN R R, WU X H, et al. Patterns of long-term distribution of typical wetland vegetation (1987-2016) and its response to hydrological processes in Lake Dongting[J]. Journal of Lake Sciences,2020,32(6):1723-1735. ◇ doi: 10.18307/2020.0613
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(333) PDF Downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return