Citation: | LI C S,LIU Y Q,LIU H,et al.Pollution characteristics and refined source apportionment for VOCs in Tianjin Industrial Area in spring and summer[J].Journal of Environmental Engineering Technology,2023,13(2):491-500 doi: 10.12153/j.issn.1674-991X.20220214 |
109 volatile organic compounds (VOCs) in the ambient air of Tianjin Industrial Area were monitored offline from March 2021 to August 2021 by thermal desorption gas chromatography-mass spectrometry method. The composition characteristics, ozone formation potential (OFP) and sources of VOCs were studied, and refined analysis of industrial emission sources was carried out. The results showed that VOCs concentrations fluctuated between (46.6±19.7) and (136.8±55.7) µg/m3 during the observation period, with alkanes, halogenated hydrocarbons and oxygenated volatile organic compounds (OVOCs)contributing more to VOCs concentrations, and alkanes and aromatic hydrocarbons showed a daily trend of low at noon and high in the morning and evening, while OVOCs did the opposite. Alkanes, aromatic hydrocarbons, olefin and OVOCs accounted for a large proportion of OFP contribution, the contribution proportions of alkanes to OFP were mainly influenced by their percentage of concentration, the contribution proportions of aromatic hydrocarbons and olefins to OFP was significantly higher in summer, and their emission control should be strengthened in order to control ozone (O3). Source apportionment showed that the main emission sources in spring and summer were industrial sources, solvent use sources, diesel vehicle exhaust emissions sources, oil vapour volatilisation sources and natural sources. The refined analysis of industrial sources showed a positive correlation between the concentration of aromatic hydrocarbons and the production of coke and soda ash, a positive correlation between the concentration of OVOCs and the production of natural gas, ethylene and agricultural nitrogen, phosphorus and potassium fertilizers, a positive correlation between the concentration of halogenated hydrocarbons and the production of natural gas, automobiles, agricultural nitrogen, phosphorus and potassium fertilizers, and soda ash, and a positive correlation between the concentration of olefins and the production of power generation equipment. It was preliminarily determined that the aromatic hydrocarbons, OVOCs, halogenated hydrocarbons and olefins in the ambient air of the region were likely to come from these significantly correlated sub-segments of industrial enterprises.
[1] |
付昱萌, 杨红刚, 卢民瑜, 等.鄂州市大气VOCs污染特征及来源解析[J]. 环境科学,2020,41(3):1085-1092.
FU Y M, YANG H G, LU M Y, et al. Analysis of pollution characteristics and sources of atmospheric VOCs in Ezhou City[J]. Environmental Science,2020,41(3):1085-1092.
|
[2] |
WEI W, LÜ Z F, YANG G, et al. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: a case study on a petroleum refinery in Northern China[J]. Environmental Pollution,2016,218:681-688. doi: 10.1016/j.envpol.2016.07.062
|
[3] |
赵秋月, 李春燕, 陈凤, 等.南通市夏季VOCs污染特征与来源研究[J]. 中国环境监测,2020,36(2):148-156.
ZHAO Q Y, LI C Y, CHEN F, et al. Pollution characteristics and source analysis of ambient VOCs in summer in Nantong[J]. Environmental Monitoring in China,2020,36(2):148-156.
|
[4] |
王韵杰, 张少君, 郝吉明.中国大气污染治理: 进展·挑战·路径[J]. 环境科学研究,2019,32(10):1755-1762.
WANG Y J, ZHANG S J, HAO J M. Air pollution control in China: progress, challenges and future pathways[J]. Research of Environmental Sciences,2019,32(10):1755-1762.
|
[5] |
张浩然, 刘敏, 王小嫚, 等.南昌市2021年春季大气VOCs污染特征和来源分析[J]. 中国环境科学,2022,42(3):1040-1047. doi: 10.3969/j.issn.1000-6923.2022.03.006
ZHANG H R, LIU M, WANG X M, et al. Characteristics and sources of atmospheric VOCs during spring of 2021 in Nanchang[J]. China Environmental Science,2022,42(3):1040-1047. doi: 10.3969/j.issn.1000-6923.2022.03.006
|
[6] |
王雪涵, 张文慧, 毕晓辉, 等.2001—2020年天津市大气污染特征的演变与防治历程[J]. 环境科学研究,2022,35(4):945-955. doi: 10.13198/j.issn.1001-6929.2021.12.21
WANG X H, ZHANG W H, BI X H, et al. Characteristics evolution and prevention development of ambient pollution in Tianjin, China[J]. Research of Environmental Sciences,2022,35(4):945-955. doi: 10.13198/j.issn.1001-6929.2021.12.21
|
[7] |
WANG Y S, REN X Y, JI D S, et al. Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007[J]. Journal of Environmental Sciences,2012,24(1):95-101. doi: 10.1016/S1001-0742(11)60732-8
|
[8] |
XIONG C, WANG N, ZHOU L, et al. Component characteristics and source apportionment of volatile organic compounds during summer and winter in downtown Chengdu, southwest China[J]. Atmospheric Environment,2021,258:118485. doi: 10.1016/j.atmosenv.2021.118485
|
[9] |
王成辉, 陈军辉, 韩丽, 等.成都市城区大气VOCs季节污染特征及来源解析[J]. 环境科学,2020,41(9):3951-3960.
WANG C H, CHEN J H, HAN L, et al. Seasonal pollution characteristics and analysis of the sources of atmospheric VOCs in Chengdu urban area[J]. Environmental Science,2020,41(9):3951-3960.
|
[10] |
李康为, 应方, 陈玲红, 等.杭州市主城区VOCs污染特征及影响因素[J]. 浙江大学学报(工学版),2019,53(4):671-683.
LI K W, YING F, CHEN L H, et al. Ambient VOCs characteristics and associated effects in urban Hangzhou[J]. Journal of Zhejiang University (Engineering Science),2019,53(4):671-683.
|
[11] |
刘锐泽, 方渊, 张韬, 等.青岛市夏季VOCs污染特征及来源解析[J]. 环境工程技术学报,2021,11(6):1041-1048. doi: 10.12153/j.issn.1674-991X.20210202
LIU R Z, FANG Y, ZHANG T, et al. Characteristics and source analysis of VOCs pollution in summer in Qingdao[J]. Journal of Environmental Engineering Technology,2021,11(6):1041-1048. doi: 10.12153/j.issn.1674-991X.20210202
|
[12] |
王帅, 崔建升, 冯亚平, 等.石家庄市挥发性有机物和臭氧的污染特征及源解析[J]. 环境科学,2020,41(12):5325-5335.
WANG S, CUI J S, FENG Y P, et al. Characteristics and source apportionment of VOCs and O3 in Shijiazhuang[J]. Environmental Science,2020,41(12):5325-5335.
|
[13] |
彭瑾, 成海容, 王祖武, 等.武汉市城区大气挥发性有机物的污染特征及来源解析[J]. 武汉大学学报(理学版),2020,66(4):369-376.
PENG J, CHENG H R, WANG Z W, et al. Pollution characteristics and sources apportionment of atmospheric volatile organic compounds in Wuhan urban area[J]. Journal of Wuhan University (Natural Science Edition),2020,66(4):369-376.
|
[14] |
成翔, 赵继峰, 肖洋, 等.工业聚集区大气VOCs组成特征及对臭氧生成的影响[J]. 环境工程技术学报,2020,10(5):823-830. doi: 10.12153/j.issn.1674-991X.20190209
CHENG X, ZHAO J F, XIAO Y, et al. Composition characteristics of atmospheric VOCs and the influence on ozone formation in an industrial cluster area[J]. Journal of Environmental Engineering Technology,2020,10(5):823-830. doi: 10.12153/j.issn.1674-991X.20190209
|
[15] |
GENG F H, ZHAO C S, TANG X, et al. Analysis of ozone and VOCs measured in Shanghai: a case study[J]. Atmospheric Environment,2007,41(5):989-1001. doi: 10.1016/j.atmosenv.2006.09.023
|
[16] |
SHAO M, ZHANG Y H, ZENG L M, et al. Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production[J]. Journal of Environmental Management,2009,90(1):512-518. doi: 10.1016/j.jenvman.2007.12.008
|
[17] |
景盛翱, 高雅琴, 沈建东, 等.杭州市城区挥发性有机物污染特征及反应活性[J]. 环境科学,2020,41(12):5306-5315.
JING S A, GAO Y Q, SHEN J D, et al. Characteristics and reactivity of ambient VOCs in urban Hangzhou, China[J]. Environmental Science,2020,41(12):5306-5315.
|
[18] |
罗瑞雪, 刘保双, 梁丹妮, 等.天津市郊夏季的臭氧变化特征及其前体物VOCs的来源解析[J]. 环境科学,2021,42(1):75-87.
LUO R X, LIU B S, LIANG D N, et al. Characteristics of ozone and source apportionment of the precursor VOCs in Tianjin suburbs in summer[J]. Environmental Science,2021,42(1):75-87.
|
[19] |
HUI L R, LIU X G, TAN Q W, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China[J]. Atmospheric Environment,2018,192:55-71. doi: 10.1016/j.atmosenv.2018.08.042
|
[20] |
MO Z W, SHAO M, LU S H. Compilation of a source profile database for hydrocarbon and OVOC emissions in China[J]. Atmospheric Environment,2016,143:209-217. doi: 10.1016/j.atmosenv.2016.08.025
|
[21] |
高璟赟, 肖致美, 徐虹, 等.2019年天津市挥发性有机物污染特征及来源[J]. 环境科学,2021,42(1):55-64. doi: 10.13227/j.hjkx.202006257
GAO J Y, XIAO Z M, XU H, et al. Characterization and source apportionment of atmospheric VOCs in Tianjin in 2019[J]. Environmental Science,2021,42(1):55-64. doi: 10.13227/j.hjkx.202006257
|
[22] |
LIU B S, LIANG D N, YANG J M, et al. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China[J]. Environmental Pollution,2016,218:757-769. doi: 10.1016/j.envpol.2016.07.072
|
[23] |
高璟赟, 唐邈, 陈魁, 等.天津市不同功能区大气挥发性有机物污染特征及来源分析[J]. 环境污染与防治,2016,38(5):43-47.
GAO J Y, TANG M, CHEN K, et al. Pollution characteristics and source analysis of atmospheric volatile organic compounds in different function areas, Tianjin[J]. Environmental Pollution & Control,2016,38(5):43-47.
|
[24] |
环境保护部. 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法: HJ 644—2013[S]. 北京: 中国环境科学出版社, 2013.
|
[25] |
CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste,1994,44(7):881-899.
|
[26] |
LYU X P, CHEN N, GUO H, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China[J]. Science of the Total Environment,2016,541:200-209. doi: 10.1016/j.scitotenv.2015.09.093
|
[27] |
王珊, 苏亮, 刘远立, 等.皮尔森和偏相关系数模型在稻谷重金属污染程度研究中应用[J]. 中国食品卫生杂志,2020,32(6):631-635.
WANG S, SU L, LIU Y L, et al. Application of Pearson and partial correlation coefficient model in the research of heavy metal pollution in rice[J]. Chinese Journal of Food Hygiene,2020,32(6):631-635.
|
[28] |
陈木兰, 王赛男, 陈天舒, 等.西南典型区域夏季大气含氧挥发性有机化合物来源解析[J]. 环境科学,2021,42(6):2648-2658.
CHEN M L, WANG S N, CHEN T S, et al. Sources apportionment of oxygenated volatile organic compounds (OVOCs) in a typical southwestern region in China during summer[J]. Environmental Science,2021,42(6):2648-2658.
|
[29] |
田昀, 刘庆岭, 纪娜, 等.挥发性污染物二硫化碳处理技术[J]. 环境工程,2018,36(7):87-92.
TIAN Y, LIU Q L, JI N, et al. Treatment technology of carbon disulfide from volatile pollutants[J]. Environmental Engineering,2018,36(7):87-92.
|
[30] |
天津市质量技术监督局. 工业企业挥发性有机物排放控制标准: DB12/ 524—2014[S]. 天津: 天津市市场监督管理委员会, 2014.
|
[31] |
张瑞旭, 刘焕武, 邓顺熙, 等.宝鸡市秋冬季大气VOCs浓度特征及其O3和SOA生成潜势[J]. 中国环境科学,2020,40(3):983-996.
ZHANG R X, LIU H W, DENG S X, et al. Characteristics of VOCs and formation potential of O3 and SOA in autumn and winter in Baoji, China[J]. China Environmental Science,2020,40(3):983-996.
|
[32] |
徐晨曦, 陈军辉, 姜涛, 等.成都市区夏季大气挥发性有机物污染特征及来源解析[J]. 环境科学,2020,41(12):5316-5324. doi: 10.13227/j.hjkx.202006040
XU C X, CHEN J H, JIANG T, et al. Characteristics and sources of atmospheric volatile organic compounds pollution in summer in Chengdu[J]. Environmental Science,2020,41(12):5316-5324. doi: 10.13227/j.hjkx.202006040
|
[33] |
SUN J, SHEN Z X, ZHANG Y, et al. Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi'an, China[J]. Environmental Science and Pollution Research,2019,26(27):27769-27782. doi: 10.1007/s11356-019-05950-0
|
[34] |
YU S J, SU F C, YIN S S, et al. Characterization of ambient volatile organic compounds, source apportionment, and the ozone-NOx-VOC sensitivities in a heavily polluted megacity of central China: effect of sporting events and emission reductions[J]. Atmospheric Chemistry and Physics,2021,21(19):15239-15257. doi: 10.5194/acp-21-15239-2021
|
[35] |
工业和信息化部. 使用环戊烷发泡剂生产家用和类似用途电器安全技术规范: QB/T 2911—2016[S]. 北京: 中国轻工业出版社, 2016.
|