Citation: | QIU P P,XU Y,NAI C X,et al.Uncertainty analysis of air pollution under accidents of flue-gas treatment facilities for waste lead paste smelting regeneration[J].Journal of Environmental Engineering Technology,2023,13(2):517-526 doi: 10.12153/j.issn.1674-991X.20220253 |
Smelting regenerating is one of the most widely used ways to recycle heavy metal hazardous waste. Under the failure of the flue-gas treatment units of smelting facilities, the exhaust gas emission has the characteristics of significant source intensity, strong randomness of short-term emission diffusion parameters, and strong randomness of the environmental consequences, which poses a great challenge to the accurate monitoring and scientific decision-making in the emergency response. In this regard, a risk assessment method based on Gaussian Plume Model-Stochastic Response Surface Method (GAUSS-SRSM) coupling was proposed to quantitatively evaluate the random distribution and probability characteristics of pollutants under complex source intensities, diffusion parameters and their uncertainties. An enterprise in North China was selected to carry out a case study. The results showed that under the typical climatic conditions of the region, the concentrations of SO2 and Pb at 0.8-2.2 km and 0.75-1.5 km downwind might exceed the standard. The probability of exceeding the maximum ground concentration limit was 44% and 28%, respectively. The exposure concentrations characterized at 95% confidence level were 0.68 and 0.005 2 mg/m3, which exceeded Ambient Air Quality Standards (GB 3095-2012) by 1.36 times and 1.16 times, respectively. Seasonal differences in wind speed and temperature, etc. led to large differences in pollution and its probability characteristics in different seasons at the same facility. In the case of Pb, for example, the maximum range of potential exceedances in winter differed by 0.6 km from that in summer, with 24% difference in exceedance probability and 0.003 9 mg/m3 difference in exposure concentration. The uncertainty of climate and source intensity made the air pollution consequences have obvious uncertainty, with the maximum uncertainty of 3.85 at 0.5 km downwind. As the distance increased, the uncertainty decreased, with only 1.74 at 3.0 km. As the large degree and high possibility of pollution occurred at 0.8-2.2 km downwind, it was necessary to avoid the deployment of pollution-sensitive equipment or devices in this area, and it should be used as a key area for emergency monitoring after the accident; while the uncertainty of 0.5-1.2 km was large, it was also necessary to overcome the random error by strengthening the monitoring frequency.
[1] |
ZHANG M M, BUEKENS A, LI X D. Brominated flame retardants and the formation of dioxins and furans in fires and combustion[J]. Journal of Hazardous Materials,2016,304:26-39. doi: 10.1016/j.jhazmat.2015.10.014
|
[2] |
王菲, 张曼丽, 王雪娇, 等.我国铜、铅和锌冶炼过程中危险废物产生与污染特性[J]. 环境工程技术学报,2021,11(5):1012-1019. doi: 10.12153/j.issn.1674-991X.20210080
WANG F, ZHANG M L, WANG X J, et al. Generation and pollution characteristics of hazardous wastes from smelting of copper, lead and zinc in China[J]. Journal of Environmental Engineering Technology,2021,11(5):1012-1019. doi: 10.12153/j.issn.1674-991X.20210080
|
[3] |
郭学益, 田庆华, 刘咏, 等.有色金属资源循环研究应用进展[J]. 中国有色金属学报,2019,29(09):1859-1901. doi: 10.19476/j.ysxb.1004.0609.2019.09.06
GUO X Y, TIAN Q H, LIU Y, et al. Progress in the application of non-ferrous metal resource recycling research[J]. Chinese Journal of Nonferrous Metals,2019,29(09):1859-1901. doi: 10.19476/j.ysxb.1004.0609.2019.09.06
|
[4] |
陈彪, 张俊丰, 黄妍, 等.废铅蓄电池资源循环技术与污染物及CO2源头减排[J]. 湘潭大学学报(自然科学版),2021,43(3):1-7.
CHEN B, ZHANG J F, HUANG Y, et al. Resource recycling technology for waste lead-acid batteries followed pollutants and CO2 reducing at source[J]. Journal of Xiangtan University (Natural Science Edition),2021,43(3):1-7.
|
[5] |
QIAN Z, KALUARACHCHI J J. Risk assessment at hazardous waste-contaminated sites with variability of population characteristics[J]. Environment International,2002,28(1/2):41-53.
|
[6] |
生态环境部. 固体废物再生利用污染防治技术导则: HJ 1091—2020[S/OL]. [2022-02-26]. https://www.doc88.com/p-11261192613973.html?r=1.
|
[7] |
VILAVERT L, NADAL M, MARI M, et al. Monitoring temporal trends in environmental levels of polychlorinated dibenzo-p-dioxins and dibenzofurans: results from a 10-year surveillance program of a hazardous waste incinerator[J]. Archives of Environmental Contamination and Toxicology,2010,59(4):521-531. doi: 10.1007/s00244-010-9523-4
|
[8] |
黄道建, 陈晓雯, 蔡凤珊, 等.珠江三角洲垃圾焚烧发电厂烟气污染物的呼吸暴露风险研究[J]. 华南师范大学学报(自然科学版),2020,52(5):41-48.
HUANG D J, CHEN X W, CAI F S, et al. A study of the inhalation exposure risk of pollutants in flue gas from solid waste incineration power plants in the Pearl River Delta[J]. Journal of South China Normal University (Natural Science Edition),2020,52(5):41-48.
|
[9] |
张海龙, 李祥平, 齐剑英, 等.生活垃圾焚烧处理设施周边环境重金属污染健康风险评价[J]. 农业环境科学学报,2013,32(8):1670-1676.
ZHANG H L, LI X P, QI J Y, et al. Primary research on health risk assessment of heavy metals in the surrounding soil and air of a municipal solid waste incinerator (MSWI), South China[J]. Journal of Agro-Environment Science,2013,32(8):1670-1676.
|
[10] |
KOBAYASHI T, NAGAI H, CHINO M, et al. Source term estimation of atmospheric release due to the Fukushima Daiichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations[J]. Journal of Nuclear Science & Technology,2013,50(3):255-264.
|
[11] |
RIPAMONTI G, LONATI G, BARALDI P, et al. Uncertainty propagation in a model for the estimation of the ground level concentration of dioxin/furans emitted from a waste gasification plant[J]. Reliability Engineering & System Safety,2013,120:98-105.
|
[12] |
SILVA K, ISHIWATARI Y, TAKAHARA S. Cost per severe accident as an index for severe accident consequence assessment and its applications[J]. Reliability Engineering & System Safety,2014,123:110-122.
|
[13] |
马飞.生活垃圾焚烧发电厂环境风险评价及管理策略研究[J]. 中国资源综合利用,2021,39(2):65-67. doi: 10.3969/j.issn.1008-9500.2021.02.021
MA F. Research on environmental risk assessment and management strategy of domestic waste incineration power plant[J]. China Resources Comprehensive Utilization,2021,39(2):65-67. doi: 10.3969/j.issn.1008-9500.2021.02.021
|
[14] |
刘华峰, 于可利, 李金惠, 等.危险废物焚烧设施的环境风险评价[J]. 环境科学研究,2005,18(增刊 1):48-52. doi: 10.3321/j.issn:1001-6929.2005.z1.012
LIU H F, YU K L, LI J H, et al. Environment risk assessment of hazardous waste incineration[J]. Research of Environmental Sciences,2005,18(Suppl 1):48-52. doi: 10.3321/j.issn:1001-6929.2005.z1.012
|
[15] |
祁栋, 蔺公敏.富氧侧吹熔池熔炼炉处理废蓄电池铅泥初探[J]. 有色矿冶,2015,31(2):36-38. doi: 10.3969/j.issn.1007-967X.2015.02.011
QI D, LIN G M. Primary research on processing of waste lead-acid batteries withside-blown oxygen enrichment in molten bath of smelting furnace[J]. Non-Ferrous Mining and Metallurgy,2015,31(2):36-38. doi: 10.3969/j.issn.1007-967X.2015.02.011
|
[16] |
AL-BAGHDADI M A R S, AL-JANABI H A K S. Modeling optimizes PEM fuel cell performance using three-dimensional multi-phase computational fluid dynamics model[J]. Energy Conversion and Management,2007,48(12):3102-3119. doi: 10.1016/j.enconman.2007.05.007
|
[17] |
ANDRONICO D, SCOLLO S, CARUSO S, et al. The 2002–03 Etna explosive activity: Tephra dispersal and features of the deposits[J]. Journal of Geophysical Research Atmospheres,2008,113(B4):B04209.
|
[18] |
YUFFA A J, GURTON K P, VIDEEN G. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging[J]. Applied Optics,2014,53(36):8514-8521. doi: 10.1364/AO.53.008514
|
[19] |
DOMHAGEN F, WAHLGREN P, HAGENTOFT C E. Impact of weather conditions and building design on contaminant infiltration from crawl spaces in Swedish schools: numerical modeling using Monte Carlo method[J]. Building Simulation,2022,15(5):845-858. doi: 10.1007/s12273-021-0832-5
|
[20] |
SOUHAR O, MARCEAU A, LOUBET B. Modelling and inference of maize pollen emission rate with a Lagrangian dispersal model using Monte Carlo method[J]. The Journal of Agricultural Science,2020,158(5):383-395. doi: 10.1017/S0021859620000763
|
[21] |
ISUKAPALLI S S, ROY A, GEORGOPOULOS P G. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems[J]. Risk Analysis:an Official Publication of the Society for Risk Analysis,2000,20(5):591-602. doi: 10.1111/0272-4332.205054
|
[22] |
SPIJKERBOER H P, BENIERS J E, JASPERS D, et al. Ability of the Gaussian plume model to predict and describe spore dispersal over a potato crop[J]. Ecological Modelling,2002,155(1):1-18. doi: 10.1016/S0304-3800(01)00475-6
|
[23] |
GORDON M, MAKAR P A, STAEBLER R M, et al. A comparison of plume rise algorithms to stack plume measurements in the Athabasca oil sands[J]. Atmospheric Chemistry and Physics,2018,18(19):14695-14714. doi: 10.5194/acp-18-14695-2018
|
[24] |
韩冬, 贺仁睦, 马进, 等.基于随机响应面法的动态仿真不确定性分析[J]. 电力系统自动化,2008,32(20):11-14. doi: 10.3321/j.issn:1000-1026.2008.20.003
HAN D, HE R M, MA J, et al. Quantitative uncertainty analysis for power system dynamic simulation based on stochastic response surface method[J]. Automation of Electric Power Systems,2008,32(20):11-14. doi: 10.3321/j.issn:1000-1026.2008.20.003
|
[25] |
LAI X, MENG Z, WANG S Y, et al. Global parametric sensitivity analysis of equivalent circuit model based on Sobol’ method for lithium-ion batteries in electric vehicles[J]. Journal of Cleaner Production,2021,294:126246. doi: 10.1016/j.jclepro.2021.126246
|
[26] |
ZHOU D, PAN E S, ZHANG Y M. Fractional polynomial function in stochastic response surface method for reliability analysis[J]. Journal of Mechanical Science and Technology,2021,35(1):121-131. doi: 10.1007/s12206-020-1211-3
|
[27] |
LI D Q, CHEN Y F, LU W B, et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics,2011,38(1):58-68. doi: 10.1016/j.compgeo.2010.10.006
|
[28] |
崔威杰, 曹博, 陈义学.基于贝叶斯MCMC方法的高斯烟羽模型不确定性分析[J]. 核技术,2020,43(4):55-61. doi: 10.11889/j.0253-3219.2020.hjs.43.040009
CUI W J, CAO B, CHEN Y X. Uncertainty analysis of Gaussian plume model based on Bayesian MCMC method[J]. Nuclear Techniques,2020,43(4):55-61. doi: 10.11889/j.0253-3219.2020.hjs.43.040009
|
[29] |
ZENG L H. Application of MATLAB in the teaching of probability theory and mathematical statistics[J]. Journal of Physics:Conference Series,2020,1651(1):012078. doi: 10.1088/1742-6596/1651/1/012078
|
[30] |
李玉平.高架污染源的最大地面浓度及位置[J]. 安全与环境学报,2010,10(6):89-91. doi: 10.3969/j.issn.1009-6094.2010.06.021
LI Y P. Maximum ground concentration and its location formed by an elevated pollution source[J]. Journal of Safety and Environment,2010,10(6):89-91. doi: 10.3969/j.issn.1009-6094.2010.06.021
|
[31] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社, 2012.
|
[32] |
刘晶晶, 杨勇, 陈恺.有机污染场地修复工程中的大气环境二次污染防治及案例分析[J]. 环境工程技术学报,2018,8(4):381-389.
LIU J J, YANG Y, CHEN K. Secondary air pollution prevention and case study in organic pollutants contaminated site remediation project[J]. Journal of Environmental Engineering Technology,2018,8(4):381-389.
|
[33] |
能昌信, 邱盼盼, 徐亚, 等.氰渣豁免处置情景下的地下水污染与健康风险[J]. 中国环境科学,2022,42(2):688-696. doi: 10.3969/j.issn.1000-6923.2022.02.022
NAI C X, QIU P P, XU Y, et al. Groundwater pollution and health risks under exemption of cyanide residue disposal scenarios[J]. China Environmental Science,2022,42(2):688-696. doi: 10.3969/j.issn.1000-6923.2022.02.022
|
[34] |
林春绵, 张震杰, 陈金海, 等.环境影响评价中卫生防护距离设置的探讨[J]. 环境科学与技术,2008,31(7):129-131. doi: 10.3969/j.issn.1003-6504.2008.07.034
LIN C M, ZHANG Z J, CHEN J H, et al. Brief discussion on the setup of health protective zone in environmental impact assessment[J]. Environmental Science & Technology,2008,31(7):129-131. doi: 10.3969/j.issn.1003-6504.2008.07.034
|
[35] |
张秋花.化工企业储罐区大气环境风险评价及风险管理措施研究[J]. 化学工程与装备,2019(10):300-304. doi: 10.19566/j.cnki.cn35-1285/tq.2019.10.121
|
[36] |
张唯, 熊险平, 刘炳杰, 等.气象条件对华北平原持续性雾霾污染程度的影响研究[J]. 环境科学与管理,2020,45(8):34-38. doi: 10.3969/j.issn.1673-1212.2020.08.008
ZHANG W, XIONG X P, LIU B J, et al. Study on influence of meteorological conditions on persistent haze pollution in North China Plain[J]. Environmental Science and Management,2020,45(8):34-38. doi: 10.3969/j.issn.1673-1212.2020.08.008
|
[37] |
XU Y, XUE X S, DONG L, et al. Long-term dynamics of leachate production, leakage from hazardous waste landfill sites and the impact on groundwater quality and human health[J]. Waste Management,2018,82:156-166. doi: 10.1016/j.wasman.2018.10.009
|
[38] |
王亘, 张妍, 张超, 等.垃圾填埋场恶臭污染对感官影响的评价研究[J]. 农业工程学报,2019,35(12):232-238. doi: 10.11975/j.issn.1002-6819.2019.12.028
WANG G, ZHANG Y, ZHANG C, et al. Sense assessment of odor pollution from landfill[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(12):232-238. □ doi: 10.11975/j.issn.1002-6819.2019.12.028
|