Citation: | XIA F,XU X J,LU H L,et al.Removal efficiency of 2,4-dichlorophenol by persulfate activated with ball-milling vanadium-titanium magnetite tailings[J].Journal of Environmental Engineering Technology,2023,13(3):1139-1149 doi: 10.12153/j.issn.1674-991X.20220407 |
The removal feasibility of 2,4-dichlorophenol (2,4-DCP) in groundwater by persulfate (PS) activated with ball-milling vanadium-titanium magnetite tailings (B-VTMT) was investigated. The morphology and composition of B-VTMT were analyzed by scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy. The effects of B-VTMT dosages, initial PS concentrations, initial pH, initial 2,4-DCP concentrations, and common anions in groundwater (Cl–, NO3 –, and SO4 2–) on 2,4-DCP removal efficiency were explored. The experiment results indicated that: The removal efficiency of 2,4-DCP was 45.4% within 39 h at room temperature under the conditions of B-VTMT dosage of 0.5 g/L, initial PS concentration of 5 mmol/L, initial 2,4-DCP concentration of 20 mg/L and initial pH 7.1. Radical quenching experiments and electron spin-resonance (ESR) spectroscopy confirmed that sulfate radical (SO4 –·) and hydroxyl radical (·OH) were the main free radicals of 2,4-DCP removal. Eight intermediates were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS). The possible degradation pathways of 2,4-DCP were speculated. The presence of chloride ions promoted the 2,4-DCP removal efficiency, while nitrate ions and sulfate ions inhibited the 2,4-DCP removal efficiency. It was concluded that B-VTMT could effectively activate PS to remove 2,4-DCP in groundwater, which was a promising way of tailings resource utilization.
[1] |
PERSSON Y, SHCHUKAREV A, OBERG L, et al. Dioxins, chlorophenols and other chlorinated organic pollutants in colloidal and water fractions of groundwater from a contaminated sawmill site[J]. Environmental Science and Pollution Research International,2008,15(6):463-471. doi: 10.1007/s11356-008-0014-3
|
[2] |
LI Y T, YUE D, WANG B, et al. Degradation of MDEA in aqueous solution in the thermally activated persulfate system[J]. Environmental Technology,2017,38(6):730-736. doi: 10.1080/09593330.2016.1210239
|
[3] |
MORADI M, GHANBARI F, MANSHOURI M, et al. Photocatalytic degradation of azo dye using nano-ZrO2/UV/Persulfate: response surface modeling and optimization[J]. Korean Journal of Chemical Engineering,2016,33(2):539-546. doi: 10.1007/s11814-015-0160-5
|
[4] |
周金倩, 马建立, 商晓甫, 等.过硫酸盐氧化修复多环芳烃污染土壤的研究[J]. 环境工程技术学报,2020,10(3):482-486. doi: 10.12153/j.issn.1674-991X.20190148
ZHOU J Q, MA J L, SHANG X F, et al. Persulfate oxidation for remediation of polycyclic aromatic hydrocarbon contaminated soil[J]. Journal of Environmental Engineering Technology,2020,10(3):482-486. doi: 10.12153/j.issn.1674-991X.20190148
|
[5] |
SUN D D, YAN X X, XUE W P. Oxidative degradation of dimethyl phthalate (DMP) by persulfate catalyzed by Ag+ combined with microwave irradiation[J]. Advanced Materials Research,2012,610:1209-1212.
|
[6] |
KANG J, WU W C, LIU W X, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for degradation of Para-chloronitrobenzene in soil[J]. Bulletin of Environmental Contamination and Toxicology,2019,103(1):140-146. doi: 10.1007/s00128-018-2511-5
|
[7] |
卢成龙, 常红, 孙福红.环境水体中自由基的检测技术研究进展[J]. 环境工程技术学报,2022,12(1):70-80. doi: 10.12153/j.issn.1674-991X.20210322
LU C L, CHANG H, SUN F H. Progress on the detection technology of free radicals in waters[J]. Journal of Environmental Engineering Technology,2022,12(1):70-80. doi: 10.12153/j.issn.1674-991X.20210322
|
[8] |
许若梦, 吴桐, 锁瑞娟, 等.基于不同自由基的高级氧化技术对水中诺氟沙星的去除效果[J]. 环境工程技术学报,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
XU R M, WU T, SUO R J, et al. Removal performance of norfloxacin from waters by advanced oxidation processes based on different free radicals[J]. Journal of Environmental Engineering Technology,2020,10(3):433-439. doi: 10.12153/j.issn.1674-991X.20190177
|
[9] |
程莹, 臧纪, 宋骏杰, 等.基于臭氧微纳米气泡的O3-H2O2体系降解有机污染物的效能与影响因素[J]. 环境工程技术学报,2022,12(4):1317-1323. doi: 10.12153/j.issn.1674-991X.20220194
CHENG Y, ZANG J, SONG J J, et al. Degradation efficiency and influencing factors of organic contaminants in O3-H2O2 system based on ozone micro-nanobubbles[J]. Journal of Environmental Engineering Technology,2022,12(4):1317-1323. doi: 10.12153/j.issn.1674-991X.20220194
|
[10] |
TEEL A L, AHMAD M, WATTS R J. Persulfate activation by naturally occurring trace minerals[J]. Journal of Hazardous Materials,2011,196:153-159. doi: 10.1016/j.jhazmat.2011.09.011
|
[11] |
LIU H Z, BRUTON T A, DOYLE F M, et al. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(Ⅲ)- and Mn(Ⅳ)-containing oxides and aquifer materials[J]. Environmental Science & Technology,2014,48(17):10330-10336.
|
[12] |
KERMANI M, MOHAMMADI F, KAKAVANDI B, et al. Simultaneous catalytic degradation of 2, 4-D and MCPA herbicides using sulfate radical-based heterogeneous oxidation over persulfate activated by natural hematite (α-Fe2O3/PS)[J]. Journal of Physics and Chemistry of Solids,2018,117:49-59. doi: 10.1016/j.jpcs.2018.02.009
|
[13] |
LAI L D, ZHOU H Y, ZHANG H, et al. Activation of peroxydisulfate by natural titanomagnetite for atrazine removal via free radicals and high-valent iron-oxo species[J]. Chemical Engineering Journal,2020,387:124165. doi: 10.1016/j.cej.2020.124165
|
[14] |
LAI L D, JI H D, ZHANG H, et al. Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: surface ≡V(Ⅲ) and ≡V(Ⅳ) as electron donors promoted the regeneration of ≡Fe(Ⅱ)[J]. Applied Catalysis B:Environmental,2021,282:119559. doi: 10.1016/j.apcatb.2020.119559
|
[15] |
范敦城, 倪文, 李瑾, 等.铁尾矿再选粗精矿深度还原含铁硅酸盐矿物的生成与还原[J]. 中南大学学报(自然科学版),2015,46(6):1973-1980.
FAN D C, NI W, LI J, et al. Generation and reduction mechanism of silicate minerals containing iron in deep reduction of rough concentrate from iron tailings[J]. Journal of Central South University (Science and Technology),2015,46(6):1973-1980.
|
[16] |
叶倩, 王城晨, 王明新, 等.球磨硫铁矿-过硫酸盐联合降解水中硝基苯和苯胺[J]. 环境工程学报,2021,15(01):30-42. doi: 10.12030/j.cjee.202005099
YE Q, WANG C C, WANG M X, et al. Degradation of nitrobenzene and aniline in water by ball milling pyrite and persulfate[J]. Chinese Journal of Environmental Engineering,2021,15(01):30-42. doi: 10.12030/j.cjee.202005099
|
[17] |
DU M M, ZHANG Y Q, ZENG X L, et al. Enhancement of ball-miling on pyrite/zero-valent iron for arsenic removal in water: a mechanistic study[J]. Chemosphere,2020,249:126130. doi: 10.1016/j.chemosphere.2020.126130
|
[18] |
ZHOU T, ZOU X L, MAO J, et al. Decomposition of sulfadiazine in a sonochemical Fe0-catalyzed persulfate system: parameters optimizing and interferences of wastewater matrix[J]. Applied Catalysis B:Environmental,2016,185:31-41. doi: 10.1016/j.apcatb.2015.12.004
|
[19] |
LAI L D, ZHOU H Y, LAI B. Heterogeneous degradation of bisphenol A by peroxymonosulfate activated with vanadium-titanium magnetite: Performance, transformation pathways and mechanism[J]. Chemical Engineering Journal,2018,349:633-645. doi: 10.1016/j.cej.2018.05.134
|
[20] |
DONG H R, HOU K J, QIAO W W, et al. Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate[J]. Chemical Engineering Journal,2019,359:1046-1055. doi: 10.1016/j.cej.2018.11.080
|
[21] |
ANIPSITAKIS G P, STATHATOS E, DIONYSIOU D D. Heterogeneous activation of oxone using Co3O4[J]. The Journal of Physical Chemistry B,2005,109(27):13052-13055. doi: 10.1021/jp052166y
|
[22] |
CHERIFI Y, ADDAD A, VEZIN H, et al. PMS activation using reduced graphene oxide under sonication: efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline[J]. Ultrasonics Sonochemistry,2019,52:164-175. doi: 10.1016/j.ultsonch.2018.11.012
|
[23] |
MA Q L, ZHANG X Y, GUO R N, et al. Persulfate activation by magnetic γ-Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants[J]. Separation and Purification Technology,2019,210:335-342. doi: 10.1016/j.seppur.2018.06.060
|
[24] |
ZHANG P, SONG D B, XUEJINGXU, et al. Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns[J]. Chemosphere,2021,281:130760. doi: 10.1016/j.chemosphere.2021.130760
|
[25] |
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science,2008,254(8):2441-2449. doi: 10.1016/j.apsusc.2007.09.063
|
[26] |
LI H X, WAN J Q, MA Y W, et al. New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions[J]. Chemical Engineering Journal,2014,250:137-147. doi: 10.1016/j.cej.2014.03.092
|
[27] |
XU L J, WANG J L. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environmental Science & Technology,2012,46(18):10145-10153.
|
[28] |
WANG Y Y, WANG L, ZHANG Y L, et al. Perdisulfate-assisted advanced oxidation of 2, 4-dichlorophenol by bio-inspired iron encapsulated biochar catalyst[J]. Journal of Colloid and Interface Science,2021,592:358-370. doi: 10.1016/j.jcis.2021.02.056
|
[29] |
WU Z H, FANG J Y, XIANG Y Y, et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: kinetics and transformation pathways[J]. Water Research,2016,104:272-282. doi: 10.1016/j.watres.2016.08.011
|
[30] |
王慧, 李晓东, 张玉秀, 等.氯离子影响热活化过硫酸盐降解苯酚的机理研究[J]. 环境科学研究,2023,36(1):150-158. doi: 10.13198/j.issn.1001-6929.2022.08.06
WANG H, LI X D, ZHANG Y X, et al. Mechanisms on the impacts of chloride ions on the degradation of phenol by thermally activated persulfate[J]. Research of Environmental Sciences,2023,36(1):150-158. doi: 10.13198/j.issn.1001-6929.2022.08.06
|
[31] |
MA W J, DU Y C, WANG N, et al. ZIF-8 derived nitrogen-doped porous carbon as metal-free catalyst of peroxymonosulfate activation[J]. Environmental Science and Pollution Research International,2017,24(19):16276-16288. doi: 10.1007/s11356-017-9191-2
|
[32] |
RAYAROTH M P, LEE C S, ARAVIND U K, et al. Oxidative degradation of benzoic acid using Fe0- and sulfidized Fe0-activated persulfate: a comparative study[J]. Chemical Engineering Journal,2017,315:426-436. doi: 10.1016/j.cej.2017.01.031
|
[33] |
SUGIMOTO T, WANG Y S. Mechanism of the shape and structure control of monodispersed α-Fe2O3 particles by sulfate ions[J]. Journal of Colloid and Interface Science,1998,207(1):137-149. doi: 10.1006/jcis.1998.5741
|
[34] |
SIEDLECKA E M, WIĘCKOWSKA A, STEPNOWSKI P. Influence of inorganic ions on MTBE degradation by Fenton's reagent[J]. Journal of Hazardous Materials,2007,147(1/2):497-502.
|
[35] |
DEVI L G, MUNIKRISHNAPPA C, NAGARAJ B, et al. Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of Alizarin Red S[J]. Journal of Molecular Catalysis A:Chemical,2013,374:125-131.
|
[36] |
WU X L, GU X G, LU S G, et al. Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine[J]. Separation and Purification Technology,2015,147:186-193. ⊕ doi: 10.1016/j.seppur.2015.04.031
|