Volume 13 Issue 3
May  2023
Turn off MathJax
Article Contents
ZHAO J Y,LIU Y H,WANG Z M,et al.Influence mechanism of amide-based amphoteric molecules on uranium adsorption capacity of WS2[J].Journal of Environmental Engineering Technology,2023,13(3):1118-1126 doi: 10.12153/j.issn.1674-991X.20220498
Citation: ZHAO J Y,LIU Y H,WANG Z M,et al.Influence mechanism of amide-based amphoteric molecules on uranium adsorption capacity of WS2[J].Journal of Environmental Engineering Technology,2023,13(3):1118-1126 doi: 10.12153/j.issn.1674-991X.20220498

Influence mechanism of amide-based amphoteric molecules on uranium adsorption capacity of WS2

doi: 10.12153/j.issn.1674-991X.20220498
  • Received Date: 2022-05-20
  • The recovery of uranium from uranium-containing wastewater is mainly based on the complexation between the material and UO2 2+ in [UO2(H2O)5]2+, but the electric dipole moment of H2O has a significant weakening effect on the complexation. The amide-based amphoteric molecule N,N-dimethyl-9-decenyl amide (NADA) was used for hydrogen bonding with [UO2(H2O)5]2+ to form UO2[(H2O)xC12H23NO]n * (x<5, UO2-Coordination Compound was named UO2-CC) ,Inert tungsten disulfide (WS2) was selected as the adsorption material, and the adsorption capacities of UO2 2+ and UO2-CC were studied by static adsorption experiments (different pH, contact time, concentration and temperature). The kinetic fitting results showed that the adsorption reaction was a chemisorption process. After NADA reconstruction, the adsorption time of UO2 2+ was shortened from 240 min to 180 min, and the quasi-second-order kinetic adsorption constant was increased by 1.35 times. The results of the isothermal adsorption study showed that the complexation process of WS2 and UO2-CC conformed to the Langmuir adsorption isothermal model, and the addition of NADA made the adsorption change from spontaneous endothermic process to spontaneous exothermic process, and the order degree of the adsorption reaction process increased. After in situ reconstruction of [UO2(H2O)5]2+ by NADA, the equilibrium adsorption capacity of UO2 2+ by WS2 increased from 45.03 mg/g (WS2/UO2 2+ system) to 122.14 mg/g (WS2/UO2-CC system). Spectroscopic analysis by X-ray photoelectron spectroscopy was used to deeply study the adsorption mechanism of NADA on WS2 after in situ reconstruction of [UO2(H2O)5]2+ at the molecular level, and to reveal the contribution of various forces (electrostatic, hydrogen bond and U-S covalent bond) to adsorption, especially the hydrogen bond of NADA.

     

  • loading
  • [1]
    稂涛, 胡南, 张辉, 等.博落回对不同化学形态铀的富集特征[J]. 环境科学研究,2017,30(8):1238-1245.

    LANG T, HU N, ZHANG H, et al. Accumulation of different chemical species of uranium in Macleaya cordata[J]. Research of Environmental Sciences,2017,30(8):1238-1245.
    [2]
    YAN X, YANG L, ZHANG X, et al. Concept of an accelerator-driven advanced nuclear energy system[J]. Energies,2017,10(7):944-957. doi: 10.3390/en10070944
    [3]
    LADSHAW A P, IVANOV A S, DAS S, et al. First-principles integrated adsorption modeling for selective capture of uranium from seawater by polyamidoxime sorbent materials[J]. ACS Applied Materials & Interfaces,2018,10(15):12580-12593.
    [4]
    律志民, 杨世民, 陈磊, 等.新型LDH@MOF-76复合材料对于水溶液中铀酰的高效富集[J]. 中国科学:化学,2019,49(1):53-64. doi: 10.1360/N032018-00112

    LÜ Z M, YANG S M, CHEN L, et al. Enhanced removal of uranium(Ⅵ) from aqueous solution by a novel LDH@MOF-76 composite[J]. Scientia Sinica Chimica),2019,49(1):53-64. doi: 10.1360/N032018-00112
    [5]
    WANG Z M, LEE S W, CATALANO J G, et al. Adsorption of uranium(Ⅵ) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling[J]. Environmental Science & Technology,2013,47(2):850-858.
    [6]
    LI Z J, CHEN F, YUAN L Y, et al. Uranium(Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal,2012,210:539-546. doi: 10.1016/j.cej.2012.09.030
    [7]
    HAN R P, ZOU W H, WANG Y, et al. Removal of uranium(Ⅵ) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect[J]. Journal of Environmental Radioactivity,2007,93(3):127-143. doi: 10.1016/j.jenvrad.2006.12.003
    [8]
    FASFOUS I I, DAWOUD J N. Uranium(Ⅵ) sorption by multiwalled carbon nanotubes from aqueous solution[J]. Applied Surface Science,2012,259:433-440. doi: 10.1016/j.apsusc.2012.07.062
    [9]
    BACHMAF S, MERKEL B J. Sorption of uranium(Ⅵ) at the clay mineral–water interface[J]. Environmental Earth Sciences,2011,63(5):925-934. doi: 10.1007/s12665-010-0761-6
    [10]
    ABD EL-MAGIED M O. Sorption of uranium ions from their aqueous solution by resins containing nanomagnetite particles[J]. Journal of Engineering,2016,2016:7214348.
    [11]
    SINGH S, KAUR M, BAJWA B S, et al. Salicylaldehyde and 3-hydroxybenzoic acid grafted NH2-MCM-41: synthesis, characterization and application as U(Ⅵ) scavenging adsorbents using batch mode, column and membrane systems[J]. Journal of Molecular Liquids,2022,346:117061. doi: 10.1016/j.molliq.2021.117061
    [12]
    JIANG X Y, WANG H Q, WANG Q L, et al. Immobilizing amino-functionalized mesoporous silica into sodium alginate for efficiently removing low concentrations of uranium[J]. Journal of Cleaner Production,2020,247:119162. doi: 10.1016/j.jclepro.2019.119162
    [13]
    BARBER P S, KELLEY S P, GRIGGS C, et al. Surface modification of ionic liquid-spun chitin fibers for the extraction of uranium from seawater: seeking the strength of chitin and the chemical functionality of chitosan[J]. Green Chemistry,2014,16:1828-1836. doi: 10.1039/C4GC00092G
    [14]
    OMICHI H, KATAKAI A, SUGO T, et al. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater[J]. Separation Science and Technology,1985,20(2/3):163-178.
    [15]
    汤家喜, 朱永乐, 刘悦, 等.生物炭对农业面源污染物中农药分子的吸附性能研究[J]. 环境工程技术学报,2020,10(6):1057-1062.

    TANG J X, ZHU Y L, LIU Y, et al. Research on adsorption properties of biochar for pesticide molecules of agricultural non-point source pollutants[J]. Journal of Environmental Engineering Technology,2020,10(6):1057-1062.
    [16]
    SEN N, DAREKAR M, SIRSAT P, et al. Recovery of uranium from lean streams by extraction and direct precipitation in microchannels[J]. Separation and Purification Technology,2019,227:115641. doi: 10.1016/j.seppur.2019.05.083
    [17]
    ZHAO G X, LI J X, REN X M, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J]. Environmental Science & Technology,2011,45(24):10454-10462.
    [18]
    ROMANCHUK A Y, SLESAREV A S, KALMYKOV S N, et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics:PCCP,2013,15(7):2321-2327. doi: 10.1039/c2cp44593j
    [19]
    石万里, 赵泽华, 叶飞, 等.酸改性凹凸棒土处理含铜废水的试验研究[J]. 环境工程技术学报,2018,8(2):169-175.

    SHI W L, ZHAO Z H, YE F, et al. Experimental study on adsorption of copper containing wastewater by modified attapulgite[J]. Journal of Environmental Engineering Technology,2018,8(2):169-175.
    [20]
    KUCHERENKO M, IZMODENOVA S V, KRUCHININ N, et al. Change in the kinetics of delayed annihilation fluorescence during rearrangement of polymer-chain structure in a nanocavity of a solid adsorbent[J]. High Energy Chemistry,2009,43:592-598. doi: 10.1134/S0018143909070169
    [21]
    王洁. 多巴胺化组装体的构建、功能化及应用[D]. 上海: 上海交通大学, 2016.
    [22]
    ZHANG X H, LEI W N, YE X, et al. A facile synthesis and characterization of graphene-like WS2 nanosheets[J]. Materials Letters,2015,159:399-402. doi: 10.1016/j.matlet.2015.07.044
    [23]
    SAVVIN S B. Analytical use of arsenazo Ⅲ: determination of thorium, zirconium, uranium and rare earth elements[J]. Talanta,1961,8(9):673-685. doi: 10.1016/0039-9140(61)80164-1
    [24]
    ZHANG Z, DONG Z, DAI Y, et al. Amidoxime-functionalized hydrothermal carbon materials for uranium removal from aqueous solution[J]. RSC Advances,2016,6(104):102462-102471. doi: 10.1039/C6RA21986A
    [25]
    SINGH S, BAJWA B S, KAUR I. (Zn/Co)-zeolitic imidazolate frameworks: room temperature synthesis and application as promising U(Ⅵ) scavengers: a comparative study[J]. Journal of Industrial and Engineering Chemistry,2021,93:351-360. doi: 10.1016/j.jiec.2020.10.012
    [26]
    史济斌, 刘国杰.评Freundlich吸附等温式的推导[J]. 大学化学,2015,30(3):76-79. doi: 10.3866/pku.DXHX2010376

    SHI J B, LIU G J. The derivation of freundlich adsorption isotherm[J]. University Chemistry,2015,30(3):76-79. doi: 10.3866/pku.DXHX2010376
    [27]
    SHARMA S, BHAGAT S, SINGH J, et al. Temperature dependent photoluminescence from WS2 nanostructures[J]. Journal of Materials Science:Materials in Electronics,2018,29(23):20064-20070. doi: 10.1007/s10854-018-0137-3
    [28]
    HAZARIKA S J, MOHANTA D. Inorganic fullerene-type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green[J]. Applied Physics A,2017,123(5):1-10.
    [29]
    田晓冬, 前田宁.N-异丙基丙烯酰胺共聚物的合成及温敏性[J]. 高分子材料科学与工程,2010,26(4):29-32.

    TIAN X D, QIAN T N. Synthesis and thermo-sensitive research of N-isopropylacrylamide copolymers[J]. Polymer Materials Science & Engineering,2010,26(4):29-32.
    [30]
    刘彦静, 曾小兵, 代朝猛, 等.石墨烯纳米复合材料在水处理中的应用研究进展[J]. 材料导报,2013,27(7):127-130.

    LIU Y J, ZENG X B, DAI C M, et al. Progress in the applied research of graphene nanocomposites in water treatment[J]. Materials Review,2013,27(7):127-130.
    [31]
    SONG W C, WANG X X, WANG Q, et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics:PCCP,2015,17(1):398-406. doi: 10.1039/C4CP04289A
    [32]
    BAYRAMOĞLU G, ÇELIK G, ARICA M Y. Studies on accumulation of uranium by fungus Lentinus sajor-caju[J]. Journal of Hazardous Materials,2006,136(2):345-353. doi: 10.1016/j.jhazmat.2005.12.027
    [33]
    LIANG X F, XU Y M, WANG L, et al. Sorption of Pb2+ on mercapto functionalized sepiolite[J]. Chemosphere,2013,90(2):548-555. doi: 10.1016/j.chemosphere.2012.08.027
    [34]
    LIU S J. Cooperative adsorption on solid surfaces[J]. Journal of Colloid and Interface Science,2015,450:224-238. doi: 10.1016/j.jcis.2015.03.013
    [35]
    WANG F H, LIU Q, LI R M, et al. Selective adsorption of uranium(Ⅵ) onto prismatic sulfides from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,490:215-221. doi: 10.1016/j.colsurfa.2015.11.045
    [36]
    MANOS M J, KANATZIDIS M G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society,2012,134(39):16441-16446. doi: 10.1021/ja308028n
    [37]
    DOU W X, YANG W T, ZHAO X J, et al. Hollow cobalt sulfide for highly efficient uranium adsorption from aqueous solutions[J]. Inorganic Chemistry Frontiers,2019,6(11):3230-3236. ⊗ doi: 10.1039/C9QI00737G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article Views(369) PDF Downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return