Volume 13 Issue 3
May  2023
Turn off MathJax
Article Contents
LIU H Z,ZHANG J,JIA R N,et al.Speciation and pollution evaluation of arsenic in the surface sediment of Nansi Lake[J].Journal of Environmental Engineering Technology,2023,13(3):1031-1038 doi: 10.12153/j.issn.1674-991X.20220501
Citation: LIU H Z,ZHANG J,JIA R N,et al.Speciation and pollution evaluation of arsenic in the surface sediment of Nansi Lake[J].Journal of Environmental Engineering Technology,2023,13(3):1031-1038 doi: 10.12153/j.issn.1674-991X.20220501

Speciation and pollution evaluation of arsenic in the surface sediment of Nansi Lake

doi: 10.12153/j.issn.1674-991X.20220501
  • Received Date: 2022-05-21
  • In order to study the occurrence and distribution characteristics of arsenic (As) and its pollution status in the surface sediments of Nansi Lake, the total content and speciation of As in 59 surface sediment samples were analyzed by aqua regia digestion-atomic fluorescence spectrometry and modified Tessier sequential extraction methods, respectively. Also, its pollution and ecological risk were evaluated by the methods of the ratio of secondary phase to primary phase (RSP) and risk assessment code (RAC). The results showed that the total arsenic (TAs) content in the surface sediments of Nansi Lake ranged from 8.81 to 25.14 mg/kg, with an average value of (18.06±5.26)mg/kg, which was higher than the soil background value of Shandong Province as well as the sediment background value of the mainstream of the Yellow River. The average content of As in each form was in the order of residual fraction (17.30 mg/kg) > humic acid - bound fraction (0.31 mg/kg) > Fe-Mn oxidation fraction (0.30 mg/kg) > ion exchange fraction (0.05 mg/kg) = water-soluble fraction (0.05 mg/kg) > carbonate-bound fraction (0.04 mg/kg) > strong organic-bound fraction (0.004 mg/kg). As in the sediments of Nansi Lake was mainly in residue fraction, and the extractable As only accounted for about 4.46% of the total As. The assessment results of RSP suggested that As in the surface sediments of Nansi Lake was all at a clean level, while the results of RAC showed that the sediments of Nansi Lake had no ecological risk in general, but sediments in about 28.8% of the sampling sites showed mild ecological risk.

     

  • loading
  • [1]
    XIAO H, SHAHAB A, XI B D, et al. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China[J]. Environmental Pollution,2021,269:116189. doi: 10.1016/j.envpol.2020.116189
    [2]
    刘利, 张嘉雯, 陈奋飞, 等.衡水湖底泥重金属污染特征及生态风险评价[J]. 环境工程技术学报,2020,10(2):205-211.

    LIU L, ZHANG J W, CHEN F F, et al. Pollution characteristics and ecological risk assessment of heavy metals in the sediment of Hengshui Lake[J]. Journal of Environmental Engineering Technology,2020,10(2):205-211.
    [3]
    VAREDA J P, VALENTE A J M, DURÃES L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review[J]. Journal of Environmental Management,2019,246:101-118. doi: 10.1016/j.jenvman.2019.05.126
    [4]
    SHAJI E, SANTOSH M, SARATH K V, et al. Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula[J]. Geoscience Frontiers,2021,12(3):101079. doi: 10.1016/j.gsf.2020.08.015
    [5]
    HACKETHAL C, KOPP J F, SARVAN I, et al. Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study)[J]. Food Chemistry,2021,346:128913. doi: 10.1016/j.foodchem.2020.128913
    [6]
    SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry,2002,17(5):517-568. doi: 10.1016/S0883-2927(02)00018-5
    [7]
    GORNY J, BILLON G, LESVEN L, et al. Arsenic behavior in river sediments under redox gradient: a review[J]. Science of the Total Environment,2015,505:423-434. doi: 10.1016/j.scitotenv.2014.10.011
    [8]
    王云倩. 东平湖沉积物中典型重金属污染研究[D]. 济南: 济南大学, 2015.
    [9]
    GUO S, ZHANG Y Z, XIAO J Y, et al. Assessment of heavy metal content, distribution, and sources in Nansi Lake sediments, China[J]. Environmental Science and Pollution Research International,2021,28(24):30929-30942. doi: 10.1007/s11356-021-12729-9
    [10]
    王龙凤. 南四湖表层沉积物中典型重金属污染研究[D]. 济南: 济南大学, 2014.
    [11]
    刘良, 张祖陆.南四湖表层沉积物重金属的空间分布、来源及污染评价[J]. 水生态学杂志,2013,34(6):7-15.

    LIU L, ZHANG Z L. Spatial distribution, sources and pollution assesment of heavy metals in the surface sediments of Nansihu Lake[J]. Journal of Hydroecology,2013,34(6):7-15.
    [12]
    YANG L Y, WANG L F, WANG Y Q, et al. Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China[J]. Environmental Monitoring and Assessment,2015,187(5):261. doi: 10.1007/s10661-015-4480-z
    [13]
    郑秀琴, 詹晓珠, 洪曾纯.王水体系消解-原子荧光法同时测定土壤中砷和汞的研究[J]. 农业环境与发展,2006,23(6):70-72.
    [14]
    张真, 董俊秀, 刘晓雯, 等.东平湖表层沉积物中砷赋存特征及风险评价[J]. 环境化学,2020,39(11):3190-3199. doi: 10.7524/j.issn.0254-6108.2019082002

    ZHANG Z, DONG J X, LIU X W, et al. Arsenic speciation characteristics and risk assessment of surface sediment in Dongping Lake[J]. Environmental Chemistry,2020,39(11):3190-3199. doi: 10.7524/j.issn.0254-6108.2019082002
    [15]
    张菊, 陈明文, 鲁长娟, 等.东平湖表层沉积物重金属形态分布特征及环境风险评价[J]. 生态环境学报,2017,26(5):850-856.

    ZHANG J, CHEN M W, LU C J, et al. Speciation distribution characteristics and environmental risk assessment of heavy metals in surface sediment of Dongping Lake[J]. Ecology and Environmental Sciences,2017,26(5):850-856.
    [16]
    BI B, LIU X H, GUO X C, et al. Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China[J]. Environmental Science and Pollution Research International,2018,25(34):34076-34090. doi: 10.1007/s11356-018-3329-8
    [17]
    KE X, GUI S F, HUANG H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere,2017,175:473-481. doi: 10.1016/j.chemosphere.2017.02.029
    [18]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 329-493.
    [19]
    WANG S L, LIN C Y, CAO X Z, et al. Arsenic content, fractionation, and ecological risk in the surface sediments of lake[J]. International Journal of Environmental Science and Technology,2012,9(1):31-40. doi: 10.1007/s13762-011-0015-5
    [20]
    WILDING L P.Spatial variability: its documentation, accommodation and implication to soil surveys[M]//NIELSEN D R, BOUMA J. Soils spatial variability. Wageningen: PUDOC publishers,1985: 166-194.
    [21]
    赵一阳, 鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较[J]. 科学通报,1992,37(13):1202-1204.
    [22]
    WIESE S B O, MACLEOD C L, LESTER J N. A recent history of metal accumulation in the sediments of the Thames Estuary, United Kingdom[J]. Estuaries,1997,20(3):483. doi: 10.2307/1352608
    [23]
    伍恒赟, 罗勇, 张起明, 等.鄱阳湖沉积物重金属空间分布及潜在生态风险评价[J]. 中国环境监测,2014,30(6):114-119. doi: 10.3969/j.issn.1002-6002.2014.06.019

    WU H Y, LUO Y, ZHANG Q M, et al. Spatial distribution and potential ecological risk assessment of heavy metals in sediments of Poyang Lake[J]. Environmental Monitoring in China,2014,30(6):114-119. doi: 10.3969/j.issn.1002-6002.2014.06.019
    [24]
    林绍霞, 柳小兰, 张转铃, 等.贵州草海表层沉积物重金属污染特征与源解析[J]. 农业环境科学学报,2021,40(2):390-399. doi: 10.11654/jaes.2020-1078

    LIN S X, LIU X L, ZHANG Z L, et al. Heavy metal pollution characteristics and source apportionment in overlying deposits of Caohai Lake, Guizhou Province[J]. Journal of Agro-Environment Science,2021,40(2):390-399. doi: 10.11654/jaes.2020-1078
    [25]
    尹宇莹, 彭高卓, 谢意南, 等.洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析[J]. 环境化学,2021,40(8):2399-2409. doi: 10.7524/j.issn.0254-6108.2020042401

    YIN Y Y, PENG G Z, XIE Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake[J]. Environmental Chemistry,2021,40(8):2399-2409. doi: 10.7524/j.issn.0254-6108.2020042401
    [26]
    邓春暖, 徐丽琼, 李宏溪, 等.云南阳宗海砷污染治理后水体和沉积物中砷的赋存特征[J]. 环境科学导刊,2021,40(5):27-33. doi: 10.13623/j.cnki.hkdk.2021.05.005

    DENG C N, XU L Q, LI H X, et al. Occurrence characteristics of arsenic in water and sediment after arsenic pollution control in Yangzonghai Lake, Yunnan[J]. Environmental Science Survey,2021,40(5):27-33. doi: 10.13623/j.cnki.hkdk.2021.05.005
    [27]
    张富贵, 彭敏, 王惠艳, 等.基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学,2020,41(9):4197-4209. doi: 10.13227/j.hjkx.201912241

    ZHANG F G, PENG M, WANG H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, southwestern, China[J]. Environmental Science,2020,41(9):4197-4209. doi: 10.13227/j.hjkx.201912241
    [28]
    蔡奎, 段亚敏, 栾文楼, 等.石家庄农田区土壤重金属Cd、Cr、Pb、As、Hg形态分布特征及其影响因素[J]. 地球与环境,2014,42(6):742-749. doi: 10.14050/j.cnki.1672-9250.2014.06.006

    CAI K, DUAN Y M, LUAN W L, et al. Form distribution characteristics and influencing factors of Cd, Cr, Pb, As and Hg in farmland soil from the Shijiazhuang area, China[J]. Earth and Environment,2014,42(6):742-749. doi: 10.14050/j.cnki.1672-9250.2014.06.006
    [29]
    李佳璐, 姜霞, 王书航, 等.丹江口水库沉积物重金属形态分布特征及其迁移能力[J]. 中国环境科学,2016,36(4):1207-1217. doi: 10.3969/j.issn.1000-6923.2016.04.037

    LI J L, JIANG X, WANG S H, et al. Heavy metal in sediment of Danjiangkou Reservoir: chemical speciation and mobility[J]. China Environmental Science,2016,36(4):1207-1217. doi: 10.3969/j.issn.1000-6923.2016.04.037
    [30]
    徐丽琼. 阳宗海不同季节条件砷形态价态变化及其对藻光合作用的影响[D]. 昆明: 云南师范大学, 2018.
    [31]
    DZOMBAK D, MOREL F. Surface complexation modeling: hydrous ferric oxide[M]. New York: Wiley-Interscience, 1990.
    [32]
    付博, 王刚, 张志彬, 等.pH与Eh对郑州北郊水源地沉积物中砷溶出的影响[J]. 青岛理工大学学报,2013,34(4):99-103. doi: 10.3969/j.issn.1673-4602.2013.04.020

    FU B, WANG G, ZHANG Z B, et al. Effect of pH and Eh on the dissolution of arsenic from the sediments in Northern Suburb Source Field, Zhengzhou[J]. Journal of Qingdao Technological University,2013,34(4):99-103. doi: 10.3969/j.issn.1673-4602.2013.04.020
    [33]
    张华兰, 于瑞莲, 万瑞安, 等. 九龙江口红树林表层沉积物重金属赋存形态及污染评价[J/OL]. 环境科学.[2022-05-20]. https: //doi. org/10.13227/j. hjkx. 202201010.

    ZHANG H L, YU R L, WAN R A, et al. Speciation and pollution assessment of heavy metals in mangrove surface sediments in Jiulong River estuary[J/OL]. Environmental Science.[2022-05-20].https://doi.org/10.13227/j.hjkx.202201010.
    [34]
    霍丽娟, 王美玲, 赵慧超, 等.不同组成有机质对土壤中砷迁移行为的影响[J]. 地球与环境,2022,50(2):184-191.

    HUO L J, WANG M L, ZHAO H C, et al. Effects of natural organic matter with different composition on the mobility of arsenic in soil[J]. Earth and Environment,2022,50(2):184-191.
    [35]
    张慧娟, 刘云根, 侯磊, 等.典型出境河流生态修复区沉积物重金属污染特征及生态风险评估[J]. 环境科学研究,2017,30(9):1415-1424. doi: 10.13198/j.issn.1001-6929.2017.02.61

    ZHANG H J, LIU Y G, HOU L, et al. Pollution characteristics and ecological risk assessment of heavy metals in sediments of a typical outbound river ecological restoration area[J]. Research of Environmental Sciences,2017,30(9):1415-1424. doi: 10.13198/j.issn.1001-6929.2017.02.61
    [36]
    余秀娟, 霍守亮, 昝逢宇, 等.巢湖表层沉积物中砷的分布特征及其污染评价[J]. 环境工程技术学报,2012,2(2):124-132. doi: 10.3969/j.issn.1674-991X.2012.02.019

    YU X J, HUO S L, ZAN F Y, et al. Distribution characteristics and contamination assessment of arsenic in surface sediments of Lake Chaohu, China[J]. Journal of Environmental Engineering Technology,2012,2(2):124-132. doi: 10.3969/j.issn.1674-991X.2012.02.019
    [37]
    汪宁欣, 刘婷婷, 谢希琳, 等.无机砷与两种典型天然有机质络合行为比较[J]. 环境科学学报,2019,39(8):2593-2601. doi: 10.13671/j.hjkxxb.2019.0150

    WANG N X, LIU T T, XIE X L, et al. Comparison of complex behavior between inorganic arsenic and two typical natural organic matter[J]. Acta Scientiae Circumstantiae,2019,39(8):2593-2601. ◇ doi: 10.13671/j.hjkxxb.2019.0150
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article Views(275) PDF Downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return