Citation: | SHI Z Y,ZHANG J T,HUANG W H,et al.Trophic structure and evolution trend of Lake Shankou ecosystem, in northeast China[J].Journal of Environmental Engineering Technology,2023,13(3):1204-1213 doi: 10.12153/j.issn.1674-991X.20220533 |
In order to explore the food web structure of Lake Shankou, an alpine lake in northeast China, and then predict a more reasonable ecological management mode for this ecosystem, the effects of physicochemical factors on primary production (PP) of Lake Shankou were identified through multivariate stepwise regression analysis. Ecosystem data of Lake Shankou from 2014 were used for Ecopath modeling, and the Ecosim model was applied to predict the succession trend of plankton and major fish species in the next 20 years (since 2014) under different scenarios. The future management modes of Lake Shankou were also explored based on correlation analysis. The results showed that Lake Shankou was a phosphorus-limited lake, and the PP of this ecosystem was positively correlated with water temperature and total phosphorus. Complex predator-prey relationships were observed in Lake Shankou ecosystem. Most energy flows of this ecosystem were concentrated on trophic level II or above, and the keystone species was the "other fish" function group. The results of the Ecopath modeling were highly reliable according to the Pedigree index (0.537). The increase in production rate (Production/Biomass, PD/B) of phytoplankton significantly promoted the relative biomass increase of crucian carp (Carassius auratus), common carp (Cyprinus carpio), and silver carp (Hypophthalmichthys molitrix). However, this promotion effect was not significant when PD/B of phytoplankton decreased by more than 5% annually. The increasing search rate of Hypophthalmichthys molitrix would enhance its predatory efficiency to zooplankton (i.e. copepod, cladocera, and rotifer), and result in a slight increase in the relative biomass of phytoplankton via trophic cascade effects. Combined with scenario analysis and correlation analysis, the elevation of phytoplankton biomass would increase fishery production, and silver carp control for controlling algae was not effective in Lake Shankou. The controlling of exogenous nutrient input was more important in future ecosystem management.
[1] |
PIKITCH E K, SANTORA C, BABCOCK E A, et al. Ecosystem-based fishery management[J]. Science,2004,305(5682):346-347. doi: 10.1126/science.1098222
|
[2] |
CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication: phosphorus and nitrogen[J]. Science,2009,323:1014-1015. doi: 10.1126/science.1167755
|
[3] |
郭云艳, 周光鑫, 王雅雯, 等.南湖水系表层沉积物有机质的赋存特征、来源及生物有效性[J]. 环境工程技术学报,2020,10(6):936-943.
GUO Y Y, ZHOU G X, WANG Y W, et al. Occurrence characteristics, sources and bioavailability of organic matter in surface sediments of Nanhu Lake water system[J]. Journal of Environmental Engineering Technology,2020,10(6):936-943.
|
[4] |
李青倩, 袁鹏, 杨鹊平, 等.长江水系氮磷生态化学计量学空间变化特征及影响因素[J]. 环境工程技术学报,2022,12(2):573-580.
LI Q Q, YUAN P, YANG Q P, et al. Spatial variation characteristics and influencing factors of nitrogen and phosphorus ecological stoichiometry in the Yangtze River system[J]. Journal of Environmental Engineering Technology,2022,12(2):573-580.
|
[5] |
王书航, 郑朔方, 蔡青, 等.南湖及周边水体中氮的时空分布、影响因素及控制对策[J]. 环境工程技术学报,2020,10(6):920-927. doi: 10.12153/j.issn.1674-991X.20200070
WANG S H, ZHENG S F, CAI Q, et al. Spatio-temporal distribution, influencing factors and control strategies of nitrogen of Nanhu Lake and its surrounding rivers[J]. Journal of Environmental Engineering Technology,2020,10(6):920-927. doi: 10.12153/j.issn.1674-991X.20200070
|
[6] |
ROBINSON K F, ALSIP P J, DRAKE A R, et al. Reviewing uncertainty in bioenergetics and food web models to project invasion impacts: four major Chinese carps in the Great Lakes[J]. Journal of Great Lakes Research,2021,47(1):83-95. doi: 10.1016/j.jglr.2020.11.003
|
[7] |
仝龄.Ecopath: 一种生态系统能量平衡评估模式[J]. 海洋水产研究,1999,20(2):103-107.
TONG L. Ecopath model: a mass-balance modeling for ecosystem estimation[J]. Marine Fisherries Reseach,1999,20(2):103-107.
|
[8] |
LIU Q G, CHEN Y, LI J L, et al. The food web structure and ecosystem properties of a filter-feeding carps dominated deep reservoir ecosystem[J]. Ecological Modelling,2007,203(3/4):279-289.
|
[9] |
WANG S C, LIU X Q, LIU Y, et al. Benthic-pelagic coupling in lake energetic food webs[J]. Ecological Modelling,2020,417:108928. doi: 10.1016/j.ecolmodel.2019.108928
|
[10] |
GUO C B, CHEN Y S, LI W, et al. Food web structure and ecosystem properties of the largest impounded lake along the eastern route of China's South-to-North Water Diversion Project[J]. Ecological Informatics,2018,43:174-184. doi: 10.1016/j.ecoinf.2017.12.003
|
[11] |
ZENG Y, ZHAO Y W, QI Z F. Evaluating the ecological state of Chinese Lake Baiyangdian (BYD) based on Ecological Network Analysis[J]. Ecological Indicators,2021,127:107788. doi: 10.1016/j.ecolind.2021.107788
|
[12] |
LASSALLE G, LOBRY J, LOC’H F L, et al. Lower trophic levels and detrital biomass control the Bay of Biscay continental shelf food web: implications for ecosystem management[J]. Progress in Oceanography,2011,91(4):561-575. doi: 10.1016/j.pocean.2011.09.002
|
[13] |
邓悦, 郑一琛, 常剑波.利用Ecopath模型评价鲢鳙放养对千岛湖生态系统的影响[J]. 生态学报,2022,42(16):1-10.
DENG Y, ZHENG Y C, CHANG J B, et al. Evaluation of the effect of tocking silver carp and bighead carp on the ecosystem of Qiandao Lake using Ecopath model[J]. Acta Ecologica Sinica,2022,42(16):1-10.
|
[14] |
韩成伟. 寒冷地区非点源氮磷环境行为与模拟预测研究[D]. 大连: 大连理工大学, 2012.
|
[15] |
刘丽娜, 马春子, 张靖天, 等.东北湖区典型流域生态安全评估[J]. 环境科学研究,2019,32(7):1108-1116. doi: 10.13198/j.issn.1001-6929.2018.11.23
LIU L N, MA C Z, ZHANG J T, et al. Ecological security assessment of typical watershed in northeast China[J]. Research of Environmental Sciences,2019,32(7):1108-1116. doi: 10.13198/j.issn.1001-6929.2018.11.23
|
[16] |
ROBSON B J, LESTER R E, BALDWIN D S, et al. Modelling food-web mediated effects of hydrological variability and environmental flows[J]. Water Research,2017,124:108-128. doi: 10.1016/j.watres.2017.07.031
|
[17] |
李昌, 张新, 赵龙, 等.基于Ecopath模型的密云水库生态系统结构与物质流动特征[J]. 生物资源,2021,43(3):292-302.
LI C, ZHANG X, ZHAO L, et al. Ecosystem structure and material flows of Miyun Reservoir based on the Ecopath model[J]. Biotic Resources,2021,43(3):292-302.
|
[18] |
CREMONA F, JÄRVALT A, BHELE U, et al. Relationships between fisheries, foodweb structure, and detrital pathway in a large shallow lake[J]. Hydrobiologia,2018,820(1):145-163. doi: 10.1007/s10750-018-3648-2
|
[19] |
宋兵. 太湖渔业和环境的生态系统模型研究[D]. 上海: 华东师范大学, 2004.
|
[20] |
LI C H, XIAN Y, YE C, et al. Wetland ecosystem status and restoration using the Ecopath with Ecosim (EWE) model[J]. Science of the Total Environment,2019,658:305-314. doi: 10.1016/j.scitotenv.2018.12.128
|
[21] |
KAO Y C, ADLERSTEIN S, RUTHERFORD E. The relative impacts of nutrient loads and invasive species on a Great Lakes food web: an Ecopath with Ecosim analysis[J]. Journal of Great Lakes Research,2014,40:35-52.
|
[22] |
PALOMARES M L D, PAULY D. Predicting food consumption of fish populations[J]. Marine Freshwater Resource,1998,49(3):447-453.
|
[23] |
HOSSAIN M M, MATSUISHI T, ARHONDITSIS G. Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)[J]. Ecological Modelling,2010,221(13):1717-30.
|
[24] |
WALTERS C, CHRISTENSEN V, PAULY D. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments[J]. Reviews in Fish Biology and Fisheries,1997,7:139-172. doi: 10.1023/A:1018479526149
|
[25] |
CHRISTENSEN V, WALTERS C J. Ecopath with Ecosim: methods, capabilities and limitations[J]. Ecological Modelling,2004,172(2/3/4):109-139.
|
[26] |
NATUGONZA V, AINSWORTH C, STURLUDÓTTIR E, et al. Ecosystem modelling of data-limited fisheries: how reliable are Ecopath with Ecosim models without historical time series fitting?[J]. Journal of Great Lakes Research,2020,46(2):414-428. doi: 10.1016/j.jglr.2020.01.001
|
[27] |
牛晓君.富营养化发生机理及水华暴发研究进展[J]. 四川环境,2006,25(3):73-76. doi: 10.14034/j.cnki.schj.2006.03.017
NIU X J. Research progress of eutrophication mechanism and breakout of water bloom[J]. Sichuan Environment,2006,25(3):73-76. doi: 10.14034/j.cnki.schj.2006.03.017
|
[28] |
梅雪英, Vladimir Razlutskij, Lars G.Rudstam, 等. 杂食性鱼类对浅水水体底栖-浮游生境耦合作用的影响: 微综述[J]. 湖泊科学,2021,33(3):667-674. doi: 10.18307/2021.0304
MEI X Y, RAZLUTSKIJ V, RUDSTAM L, et al. Effects of omnivorous fish on benthic-pelagic habitats coupling in shallow aquatic ecosystems: a minireview[J]. Journal of Lake Sciences,2021,33(3):667-674. doi: 10.18307/2021.0304
|
[29] |
COLL M, SANTOJANNI A, PALOMERA I, et al. An ecological model of the Northern and Central Adriatic Sea: analysis of ecosystem structure and fishing impacts[J]. Journal of Marine Systems,2007,67(1/2):119-154.
|
[30] |
DUAN L J, LI S Y, LIU Y, et al. Modeling changes in the coastal ecosystem of the Pearl River Estuary from 1981 to 1998[J]. Ecological Modelling,2009,220(20):2802-2818. doi: 10.1016/j.ecolmodel.2009.07.016
|
[31] |
FETAHI T, SCHAGERL M, MENGISTOU S, et al. Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia[J]. Ecological Modelling,2011,222(3):804-813. doi: 10.1016/j.ecolmodel.2010.09.038
|
[32] |
MORISSETTE L, PEDERSEN T, NILSEN M. Comparing pristine and depleted ecosystems: the Sørfjord, Norway versus the Gulf of St. Lawrence, Canada. Effects of intense fisheries on marine ecosystems[J]. Progress in Oceanography,2009,81(1/2/3/4):174-187.
|
[33] |
MUKHERJEE J, KARAN S, CHAKRABARTY M, et al. An approach towards quantification of ecosystem trophic status and health through ecological network analysis applied in Hooghly-Matla estuarine system, India[J]. Ecological Indicators,2019,100:55-68. doi: 10.1016/j.ecolind.2018.08.025
|
[34] |
ODUM E P. The strategy of ecosystem development[J]. Science,1969,164(3877):262-270. doi: 10.1126/science.164.3877.262
|
[35] |
LI Y K, CHEN Y, SONG B, et al. Ecosystem structure and functioning of Lake Taihu (China) and the impacts of fishing[J]. Fisheries Research,2009,95(2/3):309-324.
|
[36] |
PAULY D, CHRISTENSEN V, WALTERS C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries[J]. ICES Journal of Marine Science,2000,57(3):697-706. doi: 10.1006/jmsc.2000.0726
|
[37] |
COLLÉTER M, VALLS A, GUITTON J, et al. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository[J]. Ecological Modelling,2015,302:42-53. doi: 10.1016/j.ecolmodel.2015.01.025
|
[38] |
PAINE R T. A note on trophic complexity and community stability[J]. The American Naturalist,1969,103(929):91-93. doi: 10.1086/282586
|
[39] |
SU G H, LOGEZ M, XU J, et al. Human impacts on global freshwater fish biodiversity[J]. Science,2021,371(6531):835-838. doi: 10.1126/science.abd3369
|
[40] |
CREMER M C, SMITHERMAN R O. Food habits and growth of silver and bighead carp in cages and ponds[J]. Aquaculture,1980,20(1):57-64. doi: 10.1016/0044-8486(80)90061-7
|
[41] |
SPATARU P, GOPHEN M. Food composition of the barbel Tor Canis (Cyprinidae) and its role in the Lake Kinneret ecosystem[J]. Environmental Biology of Fishes,1985,14(4):295-301. doi: 10.1007/BF00002634
|
[42] |
YIN C J, HE W C, GUO L G, et al. Can top-down effects of planktivorous fish removal be used to mitigate cyanobacterial blooms in large subtropical highland lakes?[J]. Water Research,2022,218:118483. ⊕ doi: 10.1016/j.watres.2022.118483
|