Citation: | WEI J,XU X Y,GUO Z,et al.Research progress in the application and degradation mechanism of perfluorooctanoic acid photocatalytic materials[J].Journal of Environmental Engineering Technology,2023,13(3):1127-1138 doi: 10.12153/j.issn.1674-991X.20220573 |
Perfluorooctanoic acid (PFOA) is a typical perfluorinated compound widely existing in the environment. It is highly toxic and difficult to degrade, which seriously threatens eco-environmental safety and human genetic, immune, neurological and reproductive health. Hence, considerable attention has been drawn to its environmental hazard and risk prevention and control. With mild conditions, high treatment efficiency, low application cost, free secondary pollution and other advantages, photocatalytic technology has a broad application prospect in the field of PFOA degradation. In order to develop new photocatalytic materials with strong activity, good visible light absorption performance, and high stability, and achieve efficient degradation of PFOA in water, research progress in the preparation of photocatalytic degradation materials of PFOA in the past twenty years was systematically reviewed. The degradation characteristics and existing problems of different photocatalytic degradation materials were comprehensively analyzed. The reaction mechanism and activity enhancement mechanism of photocatalytic degradation materials were summarized, combined with the existing materials of photocatalytic degradation of PFOA, and eventually the photocatalytic degradation pathway of PFOA was clarified.
[1] |
OCHIAI T, IIZUKA Y, NAKATA K, et al. Efficient decomposition of perfluorocarboxylic acids in aqueous suspensions of a TiO2 photocatalyst with medium-pressure ultraviolet lamp irradiation under atmospheric pressure[J]. Industrial & Engineering Chemistry Research,2011,50(19):10943-10947.
|
[2] |
吴晓妍, 廖佳.全氟化合物的环境污染及检测方法[J]. 化学世界,2021,62(1):8-13.
WU X Y, LIAO J. Environment pollution and detection of perfluorochemicals[J]. Chemical World,2021,62(1):8-13.
|
[3] |
张杰, 赵璞君, 夏星辉. 河流不同分子量溶解性有机质对全氟化合物赋存形态的影响[J/OL]. 环境科学研究. DOI: 10.13198/j.issn.1001-6929.2022.06.07.
ZHANG J, ZHAO P J, XIA X H. Effects of Dissolved organic matter with different molecular weights on the occurrence form of polyfluoroalkyl substances in river[J]. Research of Environmental Sciences. DOI: 10.13198/j.issn.1001-6929.2022.06.07.
|
[4] |
RAHMAN M F, PELDSZUS S, ANDERSON W B. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review[J]. Water Research,2014,50:318-340.
|
[5] |
BRIEGER A, BIENEFELD N, HASAN R, et al. Impact of perfluorooctanesulfonate and perfluorooctanoic acid on human peripheral leukocytes[J]. Toxicology in Vitro,2011,25(4):960-968. doi: 10.1016/j.tiv.2011.03.005
|
[6] |
FUKUHARA Y, HIRASAWA A, LI X K, et al. Gene expression profile in the regenerating rat liver after partial hepatectomy[J]. Journal of Hepatology,2003,38(6):784-792. doi: 10.1016/S0168-8278(03)00077-1
|
[7] |
HARADA K, XU F, ONO K, et al. Effects of PFOS and PFOA on L-type Ca2+ currents in Guinea-pig ventricular myocytes[J]. Biochemical and Biophysical Research Communications,2005,329(2):487-494. doi: 10.1016/j.bbrc.2005.01.163
|
[8] |
MORIKAWA A, KAMEI N Y, HARADA K, et al. The bioconcentration factor of perfluorooctane sulfonate is significantly larger than that of perfluorooctanoate in wild turtles (Trachemys scripta elegans and Chinemys reevesii): an Ai river ecological study in Japan[J]. Ecotoxicology and Environmental Safety,2006,65(1):14-21. doi: 10.1016/j.ecoenv.2005.03.007
|
[9] |
WANG N, LV H Q, ZHOU Y Q, et al. Complete defluorination and mineralization of perfluorooctanoic acid by a mechanochemical method using alumina and persulfate[J]. Environmental Science & Technology,2019,53(14):8302-8313.
|
[10] |
LIOU J S C, SZOSTEK B, DERITO C M, et al. Investigating the biodegradability of perfluorooctanoic acid[J]. Chemosphere,2010,80(2):176-183. doi: 10.1016/j.chemosphere.2010.03.009
|
[11] |
ZHUO Q F, DENG S B, YANG B, et al. Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode[J]. Environmental Science & Technology,2011,45(7):2973-2979.
|
[12] |
张泽. 全氟辛酸辐照降解过程与机理研究[D]. 合肥: 中国科学技术大学, 2014.
|
[13] |
CHEN M J, LO S L, LEE Y C, et al. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide[J]. Journal of Hazardous Materials,2016,303:111-118. doi: 10.1016/j.jhazmat.2015.10.011
|
[14] |
YANG L, HE L Y, XUE J M, et al. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: review on influences, mechanisms and prospective[J]. Journal of Hazardous Materials,2020,393:122405. doi: 10.1016/j.jhazmat.2020.122405
|
[15] |
YANG B, HAN Y N, DENG Y P, et al. Highly efficient removal of perfluorooctanoic acid from aqueous solution by H2O2-enhanced electrocoagulation-electroflotation technique[J]. Emerging Contaminants,2016,2(1):49-55. doi: 10.1016/j.emcon.2016.04.001
|
[16] |
CHU J Y, HAN X J, YU Z, et al. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures[J]. ACS Applied Materials & Interfaces,2018,10(24):20404-20411.
|
[17] |
RYDER C R, WOOD J D, WELLS S A, et al. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus[J]. ACS Nano,2016,10(4):3900-3917. doi: 10.1021/acsnano.6b01091
|
[18] |
LI X Y, ZHANG P Y, JIN L, et al. Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism[J]. Environmental Science & Technology,2012,46(10):5528-5534.
|
[19] |
吴晓庆, 颜秉斐, 邓齐玉, 等.二硫化钼基异质结催化剂可见光降解有机污染物的研究进展[J]. 环境工程技术学报,2022,12(3):776-786.
WU X Q, YAN B F, DENG Q Y, et al. Research progress of the visible light degradation of organic pollutants over molybdenum disulfide-based heterojunction catalysts[J]. Journal of Environmental Engineering Technology,2022,12(3):776-786.
|
[20] |
张旭, 崔娜欣, 周丽, 等.b-N-TiO2/Ag3PO4复合光催化材料的制备及光催化降解有害藻的研究[J]. 环境科学研究,2021,34(11):2645-2654.
ZHANG X, CUI N X, ZHOU L, et al. Preparation of b-N-TiO2/Ag3PO4 photocatalyst and its photocatalytic degradation of harmful algae[J]. Research of Environmental Sciences,2021,34(11):2645-2654.
|
[21] |
张慧鸽, 张景繁, 郑宏祥, 等.富氧型铋卤化物Bi5O7I光催化剂研究进展[J]. 能源研究与管理,2021(2):47-53.
ZHANG H G, ZHANG J F, ZHENG H X, et al. Research progress of oxygen enriched bismuth halide Bi5O7I photocatalyst[J]. Energy Research and Management,2021(2):47-53.
|
[22] |
SHAO T, ZHANG P Y, JIN L, et al. Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide[J]. Applied Catalysis B:Environmental,2013,142/143:654-661. doi: 10.1016/j.apcatb.2013.05.074
|
[23] |
HORI H, HAYAKAWA E, EINAGA H, et al. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches[J]. Environmental Science & Technology,2004,38(22):6118-6124.
|
[24] |
唐力, 夏静芬, 杨国靖, 等.Ce/TiO2/g-C3N4异质结的制备及光催化降解PFOA反应机制[J]. 环境科学学报,2020,40(3):950-958.
TANG L, XIA J F, YANG G J, et al. Fabrication of a Ce/TiO2/g-C3N4 heterojunction and the photocatalytic decomposition mechanism of perfluorooctanoic acid with visible light[J]. Acta Scientiae Circumstantiae,2020,40(3):950-958.
|
[25] |
曲长红, 付乌有, 杨海滨.金红石型纳米TiO2颗粒的制备及其光催化性质[J]. 吉林大学学报(理学版),2009,47(4):811-814.
QU C H, FU W Y, YANG H B. Preparation and photocatalytic properties of rutile titanium dioxide nanoparticles[J]. Journal of Jilin University (Science Edition),2009,47(4):811-814.
|
[26] |
CHEN M J, LO S L, LEE Y C, et al. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide[J]. Journal of Hazardous Materials,2015,288:168-175. doi: 10.1016/j.jhazmat.2015.02.004
|
[27] |
李明洁. 二氧化钛和铂掺二氧化钛光催化降解全氟辛酸的机制研究[D]. 南宁: 广西大学, 2014.
|
[28] |
ESTRELLAN C R, SALIM C, HINODE H. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide[J]. Journal of Hazardous Materials,2010,179(1/2/3):79-83.
|
[29] |
刘晴, 喻泽斌, 张睿涵, 等.钯掺TiO2光催化降解全氟辛酸[J]. 环境科学,2015,36(6):2138-2146.
LIU Q, YU Z B, ZHANG R H, et al. Photocatalytic degradation of perfluorooctanoic acid by Pd-TiO2 photocatalyst[J]. Environmental Science,2015,36(6):2138-2146.
|
[30] |
SONG C, CHEN P, WANG C Y, et al. Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365 nm UV irradiation[J]. Chemosphere,2012,86(8):853-859. doi: 10.1016/j.chemosphere.2011.11.034
|
[31] |
PANCHANGAM S C, YELLATUR C S, YANG J S, et al. Facile fabrication of TiO2-graphene nanocomposites (TGNCs) for the efficient photocatalytic oxidation of perfluorooctanoic acid (PFOA)[J]. Journal of Environmental Chemical Engineering,2018,6(5):6359-6369. doi: 10.1016/j.jece.2018.10.003
|
[32] |
GOMEZ-RUIZ B, RIBAO P, DIBAN N, et al. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst[J]. Journal of Hazardous Materials,2018,344:950-957. doi: 10.1016/j.jhazmat.2017.11.048
|
[33] |
ZHU C, XU J L, SONG S, et al. TiO2 quantum dots loaded sulfonated graphene aerogel for effective adsorption-photocatalysis of PFOA[J]. Science of the Total Environment,2020,698:134275. doi: 10.1016/j.scitotenv.2019.134275
|
[34] |
LI F, WEI Z S, HE K, et al. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst[J]. Water Research,2020,185:116219. doi: 10.1016/j.watres.2020.116219
|
[35] |
YAO X Y, ZUO J Q, WANG Y J, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid by mesoporous Sb2O3/TiO2 heterojunctions[J]. Frontiers in Chemistry,2021,9:690520. doi: 10.3389/fchem.2021.690520
|
[36] |
芦琼, 翟莉慧, 肖寒, 等.TiO2掺杂改性提高光催化剂有机物降解能力技术研究进展[J]. 广东化工,2021,48(1):37-39.
LU Q, ZHAI L H, XIAO H, et al. Research progress of doping modification of TiO2 to improve photocatalyst organic degradation[J]. Guangdong Chemical Industry,2021,48(1):37-39.
|
[37] |
CHEN Y C, LO S L, KUO J. Effects of titanate nanotubes synthesized by a microwave hydrothermal method on photocatalytic decomposition of perfluorooctanoic acid[J]. Water Research,2011,45(14):4131-4140. doi: 10.1016/j.watres.2011.05.020
|
[38] |
LI M J, YU Z B, LIU Q, et al. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2[J]. Chemical Engineering Journal,2016,286:232-238. doi: 10.1016/j.cej.2015.10.037
|
[39] |
SONG H R, WANG Y W, LING Z, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: application of intercalation strategy in DESs[J]. Science of the Total Environment,2020,746:141009. doi: 10.1016/j.scitotenv.2020.141009
|
[40] |
梁婷婷. 氧化铟基复合光催化剂的设计、合成及其光催化性能研究[D]. 南昌: 江西科技师范大学, 2021.
|
[41] |
LAI H Y, CHEN T H, CHEN C H. Architecture controlled synthesis of flower-like In2O3 nanobundles with significantly enhanced ultraviolet scattering and ethanol sensing[J]. CrystEngComm,2012,14(17):5589. doi: 10.1039/c2ce25310k
|
[42] |
LI Z M, ZHANG P Y, SHAO T, et al. In2O3 nanoporous nanosphere: a highly efficient photocatalyst for decomposition of perfluorooctanoic acid[J]. Applied Catalysis B:Environmental,2012,125:350-357. doi: 10.1016/j.apcatb.2012.06.017
|
[43] |
LI Z M, ZHANG P Y, SHAO T, et al. Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA)[J]. Journal of Hazardous Materials,2013,260:40-46. doi: 10.1016/j.jhazmat.2013.04.042
|
[44] |
LI Z M, ZHANG P Y, LI J G, et al. Synthesis of In2O3 porous nanoplates for photocatalytic decomposition of perfluorooctanoic acid (PFOA)[J]. Catalysis Communications,2014,43:42-46. doi: 10.1016/j.catcom.2013.09.004
|
[45] |
XU C M, QIU P X, CHEN H, et al. Fabrication of two-dimensional indium oxide nanosheets with graphitic carbon nitride nanosheets as sacrificial templates[J]. Materials Letters,2019,242:24-27. doi: 10.1016/j.matlet.2019.01.101
|
[46] |
LI Z M, ZHANG P Y, LI J G, et al. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition[J]. Journal of Photochemistry and Photobiology A:Chemistry,2013,271:111-116. doi: 10.1016/j.jphotochem.2013.08.012
|
[47] |
JIANG F, ZHAO H T, CHEN H, et al. Enhancement of photocatalytic decomposition of perfluorooctanoic acid on CeO2/In2O3[J]. RSC Advances,2016,6(76):72015-72021. doi: 10.1039/C6RA09856H
|
[48] |
WANG W J, CHEN Y, LI G Y, et al. Photocatalytic reductive defluorination of perfluorooctanoic acid in water under visible light irradiation: the role of electron donor[J]. Environmental Science:Water Research & Technology,2020,6(6):1638-1648.
|
[49] |
XU C M, QIU P X, CHEN H, et al. Platinum modified indium oxide nanorods with enhanced photocatalytic activity on degradation of perfluorooctanoic acid (PFOA)[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,80:761-768. doi: 10.1016/j.jtice.2017.09.018
|
[50] |
WU Y Y, LI Y Q, FANG C, et al. Highly efficient degradation of perfluorooctanoic acid over a MnOx-modified oxygen-vacancy-rich In2O3 photocatalyst[J]. ChemCatChem,2019,11(9):2297-2303. doi: 10.1002/cctc.201900273
|
[51] |
张慧, 刘海津, 陈敏, 等.BiOAc/BiOX(X=Cl, Br)复合材料的制备及其对混合染料的去除[J]. 环境科学研究,2021,34(7):1687-1699.
ZHANG H, LIU H J, CHEN M, et al. Synthesis of BiOAc/BiOX (X=Cl, Br) composites for removal of mixed dyes[J]. Research of Environmental Sciences,2021,34(7):1687-1699.
|
[52] |
LI Y Y, WANG J S, YAO H C, et al. Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation[J]. Journal of Molecular Catalysis A:Chemical,2011,334(1/2):116-122.
|
[53] |
LI T F, WANG C S, WANG T C, et al. Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet[J]. Applied Catalysis B:Environmental,2020,268:118442. doi: 10.1016/j.apcatb.2019.118442
|
[54] |
ZHANG K L, LIU C M, HUANG F Q, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Applied Catalysis B:Environmental,2006,68(3/4):125-129.
|
[55] |
SONG Z, DONG X L, WANG N, et al. Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism[J]. Chemical Engineering Journal,2017,317:925-934. doi: 10.1016/j.cej.2017.02.126
|
[56] |
SUN Y Y, LI G Y, WANG W J, et al. Photocatalytic defluorination of perfluorooctanoic acid by surface defective BiOCl: fast microwave solvothermal synthesis and photocatalytic mechanisms[J]. Journal of Environmental Sciences,2019,84:69-79. doi: 10.1016/j.jes.2019.04.012
|
[57] |
YANG Y Q, ZHENG Z H, YANG M H, et al. In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology[J]. Journal of Hazardous Materials,2020,399:123070. doi: 10.1016/j.jhazmat.2020.123070
|
[58] |
SAHU S P, QANBARZADEH M, ATEIA M, et al. Rapid degradation and mineralization of perfluorooctanoic acid by a new petitjeanite Bi3O(OH)(PO4)2 microparticle ultraviolet photocatalyst[J]. Environmental Science & Technology Letters,2018,5(8):533-538.
|
[59] |
XU T Y, ZHU Y M, DUAN J, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid using carbon-modified bismuth phosphate composite: effectiveness, material synergy and roles of carbon[J]. Chemical Engineering Journal,2020,395:124991. doi: 10.1016/j.cej.2020.124991
|
[60] |
LI S, LIN Y H, ZHANG B P, et al. Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors[J]. The Journal of Physical Chemistry C,2010,114(7):2903-2908. doi: 10.1021/jp910401u
|
[61] |
LI Z X, SHEN Y, YANG C, et al. Significant enhancement in the visible light photocatalytic properties of BiFeO3-graphene nanohybrids[J]. J Mater Chem A,2013,1(3):823-829. doi: 10.1039/C2TA00141A
|
[62] |
LI S, ZHANG G S, ZHANG W, et al. Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst[J]. Chemical Engineering Journal,2017,326:756-764. doi: 10.1016/j.cej.2017.06.037
|
[63] |
SHANG E X, LI Y, NIU J F, et al. Photocatalytic degradation of perfluorooctanoic acid over Pb-BiFeO3/rGO catalyst: kinetics and mechanism[J]. Chemosphere,2018,211:34-43. doi: 10.1016/j.chemosphere.2018.07.130
|
[64] |
WANG J Z, CAO C S, WANG Y Y, et al. In situ preparation of p-n BiOI@Bi5O7I heterojunction for enhanced PFOA photocatalytic degradation under simulated solar light irradiation[J]. Chemical Engineering Journal,2020,391:123530. doi: 10.1016/j.cej.2019.123530
|
[65] |
孙媛媛. 铋系催化剂对全氟辛酸的降解机制研究[D]. 广州: 广东工业大学, 2019.
|
[66] |
BACHA A U R, NABI I, FU Z Y, et al. A comparative study of bismuth-based photocatalysts with titanium dioxide for perfluorooctanoic acid degradation[J]. Chinese Chemical Letters,2019,30(12):2225-2230. doi: 10.1016/j.cclet.2019.07.058
|
[67] |
KIM N H, KIM H W. Gallium oxide nanomaterials produced on SiO2 substrates via thermal evaporation[J]. Applied Surface Science,2005,242(1/2):29-34.
|
[68] |
XU J J, WU M M, YANG J W, et al. Efficient photocatalytic degradation of perfluorooctanoic acid by a wide band gap p-block metal oxyhydroxide InOOH[J]. Applied Surface Science,2017,416:587-592. doi: 10.1016/j.apsusc.2017.04.040
|
[69] |
TANG H D, ZHANG W J, MENG Y, et al. A direct Z-scheme heterojunction with boosted transportation of photogenerated charge carriers for highly efficient photodegradation of PFOA: reaction kinetics and mechanism[J]. Applied Catalysis B:Environmental,2021,285:119851. doi: 10.1016/j.apcatb.2020.119851
|
[70] |
FRATTINI L, ISAACS M A, PARLETT C M A, et al. Support enhanced α-pinene isomerization over HPW/SBA-15[J]. Applied Catalysis B:Environmental,2017,200:10-18. doi: 10.1016/j.apcatb.2016.06.064
|
[71] |
YOU X, YU L L, XIAO F F, et al. Synthesis of phosphotungstic acid-supported bimodal mesoporous silica-based catalyst for defluorination of aqueous perfluorooctanoic acid under vacuum UV irradiation[J]. Chemical Engineering Journal,2018,335:812-821. doi: 10.1016/j.cej.2017.10.123
|
[72] |
HORI H, YAMAMOTO A, KOIKE K, et al. Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(Ⅱ)/(Ⅲ) redox reactions[J]. Chemosphere,2007,68(3):572-578. doi: 10.1016/j.chemosphere.2006.12.038
|
[73] |
QIAN L, GEORGI A, GONZALEZ-OLMOS R, et al. Degradation of perfluorooctanoic acid adsorbed on Fe-zeolites with molecular oxygen as oxidant under UV-A irradiation[J]. Applied Catalysis B:Environmental,2020,278:119283. doi: 10.1016/j.apcatb.2020.119283
|
[74] |
XU T Y, JI H D, GU Y, et al. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr) oxides/carbon sphere composite[J]. Chemical Engineering Journal,2020,388:124230. doi: 10.1016/j.cej.2020.124230
|
[75] |
YAN T T, CHEN H, JIANG F, et al. Adsorption of perfluorooctane sulfonate and perfluorooctanoic acid on magnetic mesoporous carbon nitride[J]. Journal of Chemical & Engineering Data,2014,59(2):508-515.
|
[76] |
QU Y, ZHANG C J, LI F, et al. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon[J]. Journal of Hazardous Materials,2009,169(1/2/3):146-152.
|
[77] |
DUAN L J, WANG B, HECK K, et al. Efficient photocatalytic PFOA degradation over boron nitride[J]. Environmental Science & Technology Letters,2020,7(8):613-619.
|
[78] |
ONG C B, MOHAMMAD A W, NG L Y, et al. Solar photocatalytic and surface enhancement of ZnO/rGO nanocomposite: degradation of perfluorooctanoic acid and dye[J]. Process Safety and Environmental Protection,2017,112:298-307. doi: 10.1016/j.psep.2017.04.031
|
[79] |
YANG Y Q, JI W Q, LI X Y, et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres[J]. Chemical Engineering Journal,2021,420:129934. doi: 10.1016/j.cej.2021.129934
|
[80] |
LOW J, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694. doi: 10.1002/adma.201601694
|
[81] |
王丹丹, 王梦琳, 蒋宗瑜, 等.可见光响应g-C3N4/Ag3PO4 Ⅱ型异质结的调控制备及其光催化活性研究[J]. 吉林师范大学学报(自然科学版),2021,42(2):106-114.
WANG D D, WANG M L, JIANG Z Y, et al. Preparation of visible-light-driven g-C3N4/Ag3PO4 type Ⅱ heterojunction and research of their photocatalytic properties[J]. Journal of Jilin Normal University (Natural Science Edition),2021,42(2):106-114.
|
[82] |
BARD A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. Journal of Photochemistry,1979,10(1):59-75. doi: 10.1016/0047-2670(79)80037-4
|
[83] |
XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem,2020,6(7):1543-1559. doi: 10.1016/j.chempr.2020.06.010
|
[84] |
TADA H, MITSUI T, KIYONAGA T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials,2006,5(10):782-786. doi: 10.1038/nmat1734
|
[85] |
YU J G, WANG S H, LOW J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics:PCCP,2013,15(39):16883-16890. doi: 10.1039/c3cp53131g
|
[86] |
LI L, SALVADOR P A, ROHRER G S. Photocatalysts with internal electric fields[J]. Nanoscale,2014,6(1):24-42. doi: 10.1039/C3NR03998F
|
[87] |
YU J G, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J]. Journal of the American Chemical Society,2014,136(25):8839-8842. doi: 10.1021/ja5044787
|
[88] |
POLARZ S, STRUNK J, ISCHENKO V, et al. On the role of oxygen defects in the catalytic performance of zinc oxide[J]. Angewandte Chemie International Edition,2006,45(18):2965-2969. doi: 10.1002/anie.200503068
|
[89] |
刘丹丹, 丁文杰, 刘佳佳, 等.纳米氧化物光催化剂的缺陷调控研究进展[J]. 稀有金属,2021,45(5):583-610.
LIU D D, DING W J, LIU J J, et al. Recent advances in defect chemistry of oxides for photocatalysis applications[J]. Chinese Journal of Rare Metals,2021,45(5):583-610.
|
[90] |
PAN X Y, YANG M Q, FU X Z, et al. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications[J]. Nanoscale,2013,5(9):3601-3614. doi: 10.1039/c3nr00476g
|
[91] |
刘景景, 张泽兰, 李诗, 等.钒酸铋可见光催化材料的改性研究进展[J]. 材料导报,2021,35(17):17163-17177.
LIU J J, ZHANG Z L, LI S, et al. Research progress on modification of bismuth vanadate visible light photocatalytic materials[J]. Materials Reports,2021,35(17):17163-17177.
|
[92] |
LEARY R, WESTWOOD A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis[J]. Carbon,2011,49(3):741-772. doi: 10.1016/j.carbon.2010.10.010
|
[93] |
LIANG C D, LI Z J, DAI S. Mesoporous carbon materials: synthesis and modification[J]. Angewandte Chemie International Edition,2008,47(20):3696-3717. doi: 10.1002/anie.200702046
|
[94] |
吴文惠. 改性二氧化钛基纳米材料的构筑、结构调控和光催化性能研究[D]. 武汉: 武汉大学, 2017.
|
[95] |
MAITANI M M, TANAKA K, MOCHIZUKI D, et al. Enhancement of photoexcited charge transfer by {001}facet-dominating TiO2 nanoparticles[J]. Journal of Physical Chemistry Letters,2011,2(20):2655-2659. doi: 10.1021/jz2011622
|
[96] |
ZHOU C G, ZHOU J K, LU L, et al. Surface electric field driven directional charge separation on Ta3N5 cuboids enhancing photocatalytic solar energy conversion[J]. Applied Catalysis B: Environmental,2018,237:742-752. doi: 10.1016/j.apcatb.2018.06.036
|
[97] |
PANCHANGAM S C, LIN A Y C, SHAIK K L, et al. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium[J]. Chemosphere,2009,77(2):242-248. doi: 10.1016/j.chemosphere.2009.07.003
|
[98] |
SANSOTERA M, PERSICO F, RIZZI V, et al. The effect of oxygen in the photocatalytic oxidation pathways of perfluorooctanoic acid[J]. Journal of Fluorine Chemistry,2015,179:159-168. doi: 10.1016/j.jfluchem.2015.06.019
|
[99] |
HORI H, YAMAMOTO A, KOIKE K, et al. Photocatalytic decomposition of a perfluoroether carboxylic acid by tungstic heteropolyacids in water[J]. Applied Catalysis B:Environmental,2008,82(1/2):58-66. ⊗
|