Volume 12 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
YI W J,LI Z,LUO Z Y,et al.Selection and application of low carbon technologies in environmental impact assessment of cement Industry[J].Journal of Environmental Engineering Technology,2022,12(6):1905-1914 doi: 10.12153/j.issn.1674-991X.20220590
Citation: YI W J,LI Z,LUO Z Y,et al.Selection and application of low carbon technologies in environmental impact assessment of cement Industry[J].Journal of Environmental Engineering Technology,2022,12(6):1905-1914 doi: 10.12153/j.issn.1674-991X.20220590

Selection and application of low carbon technologies in environmental impact assessment of cement Industry

doi: 10.12153/j.issn.1674-991X.20220590
  • Received Date: 2022-06-07
    Available Online: 2022-11-25
  • The cement industry is one of the major energy-consuming industries and one of the major CO2 emissions. It is very important to conduct carbon emission assessment and recommend appropriate low-carbon technologies in the environmental impact assessment (EIA) of the cement industry. The carbon production links of the cement production processes were analyzed, and the low-carbon technologies that appeared at home and abroad were sorted out. By establishing low-carbon technology evaluation index system in the cement industry, combined with actual investigation data, 15 low-carbon technologies of the cement representative enterprises in Hunan Province were evaluated, which provided a reference for the selection and application of carbon emission control technologies in the EIA of cement enterprises. The results showed that in terms of low carbon effect, the construction of energy management center, pure low-temperature waste heat power generation technology, high solid-gas ratio cement suspension pre-decomposition technology and the use of grinding aids had high scores, while in terms of technology maturity and technology universality, the scores of pure low-temperature waste heat power generation technology, roller mill grinding system, high voltage frequency conversion energy saving transformation and the use of grinding aids were high. From the perspective of economic evaluation index, the scores of pure low-temperature waste heat power generation technology, cement kiln cooperative disposal of municipal solid waste, high solid-gas ratio cement suspension pre-decomposition technology and the construction of energy management center were higher. The top technologies in the comprehensive ranking were mainly energy comprehensive utilization and energy-saving process control technologies, including pure low-temperature waste heat power generation technology, construction of energy management center, high solid-gas ratio cement suspension pre-decomposition technology, etc., which were the key recommended technologies in the environmental impact assessment.

     

  • loading
  • [1]
    宋晓晖, 吕晨, 王丽娟, 等.建设项目温室气体环境影响评价方法研究[J]. 环境科学研究,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20

    SONG X H, LÜ C, WANG L J, et al. Method of greenhouse gas environmental impact assessment for construction projects[J]. Research of Environmental Sciences,2022,35(2):405-413. doi: 10.13198/j.issn.1001-6929.2021.11.20
    [2]
    生态环境部办公厅. 关于开展重点行业建设项目碳排放环境影响评价试点的通知[A/OL]. (2021-07-21)[2022-06-05]. https://wzq1.mee.gov.cn/xxgk2018/xxgk/xxgk06/202107/t20210727_851553.html.
    [3]
    重庆市生态环境局. 重庆市建设项目环境影响评价技术指南: 碳排放评价(试行)[A/OL]. (2021-01-26)[2022-06-05]. http://sthjj.cq.gov.cn/zwgk_249/zfxxgkml/zcwj/qtwj/202102/t20210208_8885745.html.P020210208575600030440.doc (live.com).
    [4]
    浙江省生态环境厅. 浙江省建设项目碳排放评价编制指南(试行)[A/OL][2021-07-06)[2022-06-05]. http://sthjt.zj.gov.cn/art/2021/7/8/art_1229263469_2310637.html.77b2c8311cfa40cabb1d5caefbc19cc9.pdf (zj.gov.cn).
    [5]
    生态环境部. 关于统筹和加强应对气候变化与生态环境保护相关工作的指导意见[A/OL]. (2021-01-09)[2022-06-07]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202101/t20210113_817275.html.
    [6]
    SANTANA-CARRILLO J L, BURCIAGA-DÍAZ O, ESCALANTE-GARCIA J I. Blended limestone-Portland cement binders enhanced by waste glass based and commercial sodium silicate:effect on properties and CO2 emissions[J]. Cement and Concrete Composites,2022,126:104364. doi: 10.1016/j.cemconcomp.2021.104364
    [7]
    de LENA E, SPINELLI M, GATTI M, et al. Techno-economic analysis of calcium looping processes for low CO2 emission cement plants[J]. International Journal of Greenhouse Gas Control,2019,82:244-260. doi: 10.1016/j.ijggc.2019.01.005
    [8]
    ANDREW R. Global CO2 emissions from cement production, 1928-2018[J]. Earth System Science Data Discussions,2019:1-67.
    [9]
    MOUMIN G, RYSSEL M, ZHAO L, et al. CO2 emission reduction in the cement industry by using a solar calciner[J]. Renewable Energy,2020,145:1578-1596. doi: 10.1016/j.renene.2019.07.045
    [10]
    US Geological Survey. Mineral commodity summaries[EB/OL]. (2022-01-31)[2022-05-17]. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-cement.pdf.
    [11]
    杨楠, 李艳霞, 赵盟, 等.水泥熟料生产企业CO2直接排放核算模型的建立[J]. 气候变化研究进展,2021,17(1):79-87.

    YANG N, LI Y X, ZHAO M, et al. Establishment of a CO2 direct emission accounting model for cement clinker manufacturers[J]. Climate Change Research,2021,17(1):79-87.
    [12]
    李伟, 王成鹏, 徐从海.建设项目碳排放环境影响评价分析及建议[J]. 环境生态学,2022,4(5):99-103.

    LI W, WANG C P, XU C H. Analysis and suggestion of carbon emission environmental impact assessment for construction project[J]. Environmental Ecology,2022,4(5):99-103.
    [13]
    罗雷, 郭旸旸, 李寅明, 等.碳中和下水泥行业低碳发展技术路径及预测研究[J]. 环境科学研究,2022,35(6):1527-1537. doi: 10.13198/j.issn.1001-6929.2021.12.20

    LUO L, GUO Y Y, LI Y M, et al. Research on low-carbon development technology path and forecast of cement industry under carbon neutral situation[J]. Research of Environmental Sciences,2022,35(6):1527-1537. doi: 10.13198/j.issn.1001-6929.2021.12.20
    [14]
    DINGA C D, WEN Z G. China's green deal: can China's cement industry achieve carbon neutral emissions by 2060[J]. Renewable and Sustainable Energy Reviews,2022,155:111931. doi: 10.1016/j.rser.2021.111931
    [15]
    NAQI A L, JANG J. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: a review[J]. Sustainability,2019,11(2):537. doi: 10.3390/su11020537
    [16]
    SANTOS T A, CILLA M S, RIBEIRO E D V. Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption[J]. Journal of Cleaner Production,2022,335:130061. doi: 10.1016/j.jclepro.2021.130061
    [17]
    COSTA F N, RIBEIRO D V. Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW)[J]. Journal of Cleaner Production,2020,276:123302. doi: 10.1016/j.jclepro.2020.123302
    [18]
    贺晋瑜, 何捷, 王郁涛, 等.中国水泥行业二氧化碳排放达峰路径研究[J]. 环境科学研究,2022,35(2):347-355. doi: 10.13198/j.issn.1001-6929.2021.11.19

    HE J Y, HE J, WANG Y T, et al. Pathway of carbon emissions peak for cement industry in China[J]. Research of Environmental Sciences,2022,35(2):347-355. doi: 10.13198/j.issn.1001-6929.2021.11.19
    [19]
    FIERRO J J, HERNÁNDEZ-GÓMEZ C, MARENCO-PORTO C A, et al. Exergo-economic comparison of waste heat recovery cycles for a cement industry case study[J]. Energy Conversion and Management:X,2022,13:100180. doi: 10.1016/j.ecmx.2022.100180
    [20]
    SANAYE S, KHAKPAAY N, CHITSAZ A, et al. A comprehensive approach for designing, modeling and optimizing of waste heat recovery cycle and power generation system in a cement plant: a thermo-economic and environmental assessment[J]. Energy Conversion and Management,2020,205:112353. doi: 10.1016/j.enconman.2019.112353
    [21]
    WEI J X, CEN K. Empirical assessing cement CO2 emissions based on China's economic and social development during 2001-2030[J]. Science of the Total Environment,2019,653:200-211. doi: 10.1016/j.scitotenv.2018.10.371
    [22]
    HOSSAIN S R, AHMED I, AZAD F S, et al. Empirical investigation of energy management practices in cement industries of Bangladesh[J]. Energy,2020,212:118741. doi: 10.1016/j.energy.2020.118741
    [23]
    WANG Y H, CHEN H, WANG H T, et al. A novel carbon dioxide capture system for a cement plant based on waste heat utilization[J]. Energy Conversion and Management,2022,257:115426. doi: 10.1016/j.enconman.2022.115426
    [24]
    PROAÑO L, SARMIENTO A T, FIGUEREDO M, et al. Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: a system dynamics approach[J]. Journal of Cleaner Production,2020,263:121457. doi: 10.1016/j.jclepro.2020.121457
    [25]
    ZHANG C Y, YU B Y, CHEN J M, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation and Recycling,2021,166:105355. doi: 10.1016/j.resconrec.2020.105355
    [26]
    SCHNEIDER M. The cement industry on the way to a low-carbon future[J]. Cement and Concrete Research,2019,124:105792. doi: 10.1016/j.cemconres.2019.105792
    [27]
    彭春元, 许日昌, 殷素红, 等.水泥产业低碳技术路线图的研究方法探讨[J]. 材料导报,2012,26(19):106-111. doi: 10.3969/j.issn.1005-023X.2012.19.024

    PENG C Y, XU R C, YIN S H, et al. Study on method of low carbon technique roadmap in cement industry[J]. Materials Review,2012,26(19):106-111. doi: 10.3969/j.issn.1005-023X.2012.19.024
    [28]
    许金华, 范英.中国水泥行业节能潜力和CO2减排潜力分析[J]. 气候变化研究进展,2013,9(5):341-349.

    XU J H, FAN Y. Potential energy saving and CO2 emission reduction in China's cement industry[J]. Progressus Inquisitiones DE Mutatione Climatis,2013,9(5):341-349.
    [29]
    何峰, 刘峥延, 邢有凯, 等.中国水泥行业节能减排措施的协同控制效应评估研究[J]. 气候变化研究进展,2021,17(4):400-409.

    HE F, LIU Z Y, XING Y K, et al. Co-control effect evaluation of the energy saving and emission reduction measures in Chinese cement industry[J]. Climate Change Research,2021,17(4):400-409.
    [30]
    化工高质量发展研究中心.碳排放被纳入环评, 涉及6地区化工行业[J]. 染整技术,2021,43(8):63-64.
    [31]
    周荣, 胡荣祥, 吴建, 等.玻璃熔窑烟气除尘、脱硫、脱硝协同治理技术的筛选与评估[J]. 环境污染与防治,2021,43(4):481-485. doi: 10.15985/j.cnki.1001-3865.2021.04.015

    ZHOU R, HU R X, WU J, et al. Screening and evaluation of collaborative treatment technology of dust, sulfur and nitrogen removal for flue gas in glass furnace[J]. Environmental Pollution & Control,2021,43(4):481-485. doi: 10.15985/j.cnki.1001-3865.2021.04.015
    [32]
    张杰, 王圣.发电行业低碳减排技术水平评估体系及方法[J]. 山西建筑,2013,39(34):194-196. doi: 10.13719/j.cnki.cn14-1279/tu.2013.34.105

    ZHANG J, WANG S. Assessment method research about supporting technology level of low carbon emission reduction of thermal power sector[J]. Shanxi Architecture,2013,39(34):194-196. doi: 10.13719/j.cnki.cn14-1279/tu.2013.34.105
    [33]
    范杰.交通运输重点节能低碳技术评价及推广应用措施研究[J]. 交通节能与环保,2019,15(1):1-4. doi: 10.3969/j.issn.1673-6478.2019.01.001

    FAN J. Research on evaluation promotion and application measures of key energy-saving and low-carbon technologies for transportation[J]. Energy Conservation & Environmental Protection in Transportation,2019,15(1):1-4. doi: 10.3969/j.issn.1673-6478.2019.01.001
    [34]
    田羽, 方刚, 周长波, 等.我国橡胶制品行业VOCs末端减排技术评估[J]. 环境工程技术学报,2021,11(4):797-806. doi: 10.12153/j.issn.1674-991X.20200227

    TIAN Y, FANG G, ZHOU C B, et al. Evaluation on VOCs terminal emission reduction technologies in rubber products industry in China[J]. Journal of Environmental Engineering Technology,2021,11(4):797-806. doi: 10.12153/j.issn.1674-991X.20200227
    [35]
    徐成龙, 庄贵阳.低碳适用技术的概念、评估与减排效益分析: 以吉林省为例[J]. 科技管理研究,2018,38(19):234-239. doi: 10.3969/j.issn.1000-7695.2018.19.033

    XU C L, ZHUANG G Y. Analysis of concept, evaluation and benefit of low-carbon applicable technology: taking Jilin Province as an example[J]. Science and Technology Management Research,2018,38(19):234-239. doi: 10.3969/j.issn.1000-7695.2018.19.033
    [36]
    SAATY T L. A scaling method for priorities in hierarchical structures[J]. Journal of Mathematical Psychology,1977,15(3):234-281. doi: 10.1016/0022-2496(77)90033-5
    [37]
    KHEYBARI S, REZAIE F M, NAJI S, et al. Evaluation of energy production technologies from biomass using analytical hierarchy process: the case of Iran[J]. Journal of Cleaner Production,2019,232:257-265. doi: 10.1016/j.jclepro.2019.05.357
    [38]
    KOKKINOS K N, KARAYANNIS V G. Supportiveness of low-carbon energy technology policy using fuzzy multicriteria decision-making methodologies[J]. Mathematics,2020,8(7):1178. doi: 10.3390/math8071178
    [39]
    PROMENTILLA M A, AVISO K, TAN R. A fuzzy analytic hierarchy process (FAHP) approach for optimal selection of low-carbon energy technologies[J]. Chemical Engineering Transactions,2015,45:1141-1146.
    [40]
    LIGUS M. Evaluation of economic, social and environmental effects of low-emission energy technologies development in Poland: a multi-criteria analysis with application of a fuzzy analytic hierarchy process (FAHP)[J]. Energies,2017,10(10):1550. doi: 10.3390/en10101550
    [41]
    洪志国, 李焱, 范植华, 等.层次分析法中高阶平均随机一致性指标(RI)的计算[J]. 计算机工程与应用,2002,38(12):45-47. doi: 10.3321/j.issn:1002-8331.2002.12.017

    HONG Z G, LI Y, FAN Z H, et al. Caculation on high-ranked RI of analytic hierarchy process[J]. Computer Engineering and Applications,2002,38(12):45-47. □ doi: 10.3321/j.issn:1002-8331.2002.12.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article Views(500) PDF Downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return